• Title/Summary/Keyword: Cylindrical third electrode

Search Result 2, Processing Time 0.013 seconds

Effect of a Cylindrical Third Electrode of a Point-Plate Type Plasma Reactor on Corona Discharge and Ozone Generation Characteristics (침대 평판형 플라즈마장치의 코로나 방전 및 오존발생 특성에 미치는 원통형 3전극의 영향)

  • Moon, Jae-Duk;Jung, Ho-Jun;Jung, Jae-Seung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.933-937
    • /
    • 2007
  • A point plate type nonthermal plasma reactor, with a grounded cylindrical third electrode which closely- encompasses the needle point, have been investigated with an emphasis on the role of the third electrode. It was found that the point plate airgap, with the grounded third electrode, had a switching characteristic on its I V characteristics for negative and positive discharges, which is very different from that of a conventional point plate airgap without a third electrode. The corona discharge and ozone generation characteristics of the plasma reactor with the grounded cylindrical third electrode, such as the corona onset voltage. the breakdown voltage. the corona current. and the amount of output ozone, were influenced significantly by the height of the third electrode. and these characteristics can be controlled by adjusting the height of the third electrode.

Effect of Pore Geometry on Gas Adsorption: Grand Canonical Monte Carlo Simulation Studies

  • Lee, Eon-Ji;Chang, Rak-Woo;Han, Ji-Hyung;Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.901-905
    • /
    • 2012
  • In this study, we investigated the pure geometrical effect of porous materials in gas adsorption using the grand canonical Monte Carlo simulations of primitive gas-pore models with various pore geometries such as planar, cylindrical, and random pore geometries. Although the model does not possess atomistic level details of porous materials, our simulation results provided many insightful information in the effect of pore geometry on the adsorption behavior of gas molecules. First, the surface curvature of porous materials plays a significant role in the amount of adsorbed gas molecules: the concave surface such as in cylindrical pores induces more attraction between gas molecules and pore, which results in the enhanced gas adsorption. On the contrary, the convex surface of random pores gives the opposite effect. Second, this geometrical effect shows a nonmonotonic dependence on the gas-pore interaction strength and length. Third, as the external gas pressure is increased, the change in the gas adsorption due to pore geometry is reduced. Finally, the pore geometry also affects the collision dynamics of gas molecules. Since our model is based on primitive description of fluid molecules, our conclusion can be applied to any fluidic systems including reactant-electrode systems.