• 제목/요약/키워드: Cylindrical structure

검색결과 666건 처리시간 0.024초

원통 구조에서 공간 콘볼루션을 이용한 상호 방사 임피던스 계산 (Calculation of the Mutual Radiation Impedance by the Spatial Convolution in the Cylindrical Structure)

  • 복태훈;이잉;팽동국;이종길;신구균;조치영
    • 한국음향학회지
    • /
    • 제29권1호
    • /
    • pp.1-9
    • /
    • 2010
  • 공간 콘볼루션을 이용하여 원통형 구조에서 진동체 사이의 상호 방사 임피던스를 계산하였다. 본 계산 방식은 평면 배열을 공간 콘볼루션에 의해 원통 구조로 변환하고 이에 대한 상호 방사 임피던스를 계산하는 것으로서 정확한 형태의 원통형 배플을 고려하지는 못하지만 계산 시간을 단축할 수 있는 효과가 있다. 본 논문에서 제안하는 공간 콘볼루션 방식에 의한 계산 결과를 기존의 4중 적분 방식에 의한 계산 결과와 비교하여 계산 방식에 대한 오차를 분석하였고, 또한 배열 구조에서 발생하는 오차를 분석하기 위해 평면 배열에서의 결과와 비교하였다. 앞의 두 가지 형태의 비교를 통하여 본 계산 방식에 대한 오차를 확인하였고, 아울러 오차 범위 내에 있는 구간에서는 공간 콘볼루션에 의한 원통 구조라 할 지라도 제한적으로 사용할 수 있음을 확인하였다.

Shaking Table Test of Steel Cylindrical Liquid Storage Tank Considering the Roof Characteristics

  • Bae, Doobyong;Park, Jang Ho
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1167-1176
    • /
    • 2018
  • Steel cylindrical tanks are widely used for the storage of hazardous substances of which leakage must be prevented under any circumstances. However, the dynamic response of the steel cylindrical liquid storage tank depends sensitively on the fluid-structure interaction and the vibration of the tank structure and necessitates clarification for the safety of the tank structure. This paper presents the results of shaking table tests performed to examine the dynamic behavior of a scaled cylindrical steel tank model considering the presence or not of fixed roof and added mass at the top of the tank for various fluid levels. The test results confirm the occurrence of both beam-type and oval-type vibration modes and show that the larger content of liquid inside the container amplified the acceleration along the height of the cylindrical tank. The oval-type vibration modes are seen to be more dominant in case of large water-to-structure mass ratio.

원통형 무한 배열 구조와 원통형 유한 배열 구조의 전파 특성 비교 (Comparison of Scattering Characteristics between Cylindrical Infinite and Finite Periodic Structure)

  • 정이루;홍익표;이경원;국찬호;김대환;육종관
    • 한국전자파학회논문지
    • /
    • 제26권2호
    • /
    • pp.196-203
    • /
    • 2015
  • 곡면 위상 배열 안테나나 곡면 주파수 선택 구조 등의 전파 특성을 해석하기 위해서는 원통형 배열 구조의 효율적인 해석방법에 대한 연구가 필요하다. 원통형 배열 구조가 실제 적용되는 구조는 유한 배열 구조지만, 대부분 전자기 해석은 무한 배열 구조라 가정하므로 실제 구조의 특성과 근사화한 구조의 특성 간의 오차가 발생하게 된다. 따라서 원통형 무한 배열 구조와 유한 배열 구조의 전파 특성의 비교와 분석이 필요하다. 본 논문에서는 원통형 무한 배열 구조를 해석하기 위해 원통형 Floquet harmonics 해석 방법을 적용하였으며, 원통형 유한 배열 구조를 해석하기 위해서는 너비가 좁은 스트립(strip)이 배열된 배열 구조를 가정하여 thin wire approximation을 적용한 method of moments(MoM)를 이용하였다. 본 논문에서는 원통형 유한 배열 구조와 무한 배열 구조의 전파 특성을 비교하기 위하여 투과 특성과 전류 분포를 계산하였다.

Using structural intensity approach to characterize vibro-acoustic behavior of the cylindrical shell structure

  • Wang, Yuran;Huang, Rong;Liu, Zishun
    • Coupled systems mechanics
    • /
    • 제7권3호
    • /
    • pp.297-319
    • /
    • 2018
  • In this paper, the vibro-acoustic behaviors of vibrational cylindrical shells are investigated by using structural intensity approach. The reducing interior noise method for vibrating cylindrical shells is proposed by altering and redistributing the structural intensity through changing the damping property of the structure. The concept of proposed novel method is based on the properties of structural intensity distribution on cylindrical shells under different load and damping conditions, which can reflects power flow in the structures. In the study, the modal formulas of structural intensity are developed for the steady state vibration of cylindrical shell structures. The detailed formulas of structural intensity are derived by substituting modal quantities, in which the effect of main parameters such as weight coefficients and distribution functions on structure intensity are analyzed and discussed. Numerical simulations are first carried out based on the structural intensity analytical solutions of modal formulas. Through simulating the coupling vibration and acoustical radiation problems of cylindrical shell, the relationship between vibro-acoustic and structural intensity distribution is derived. We find that for cylindrical shell, by properly arranging damping conditions, the structural intensity can be efficiently changed and further the noise property can be improved. The proposed methodology has important implications and potential applications in the vibration and noise control of fuselage structure.

실린더형 쉘 구조물의 모드 특성 및 진동제어: 공기중 및 수중 실험결과 비교 (Modal Characteristics and Vibration Control of Cylindrical Shell Structure: Experimental Results Comparison in the Air and Water)

  • 손정우;권오철;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.384-389
    • /
    • 2009
  • In the present paper, dynamic characteristics and vibration control performance of a cylindrical shell structure are experimentally investigated and results are presented in the air and underwater conditions. End-capped cylindrical shell structure is manufactured and Macro-Fiber Composite (MFC) actuators are attached on the inside-surface of the structure. Modal characteristics are studied in the air and under the water conditions and then equation of motion of the structure is derived from the test results. Structural vibration control performances of the proposed structure are evaluated via experiments with optimal control algorithm. Vibration control performances are presented both in the frequency and time domains.

  • PDF

실린더형 셸 구조물의 모드 특성 및 진동제어 : 공기중 및 수중 실험결과 비교 (Modal Characteristics and Vibration Control of Cylindrical Shell Structure : Experimental Results Comparison in the Air and Water)

  • 손정우;권오철;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권9호
    • /
    • pp.899-906
    • /
    • 2009
  • In the present paper, dynamic characteristics and vibration control performance of a cylindrical shell structure are experimentally investigated and results are presented in the air and underwater conditions. End-capped cylindrical shell structure is manufactured and macro-fiber composite(MFC) actuators are attached on the inside-surface of the structure. Modal characteristics are studied in the air and under the water conditions and then equation of motion of the structure is derived from the test results. Structural vibration control performances of the proposed structure are evaluated via experiments with optimal control algorithm. Vibration control performances are presented both in the frequency and time domains.

레이놀즈 수가 와류 감쇠 및 저항 저감형 나선형 해양 구조물 주위 유동에 미치는 영향 (Reynolds number effects on flow over twisted offshore structure with drag reduction and vortex suppression)

  • 정재환;윤현식
    • 한국해양공학회지
    • /
    • 제29권1호
    • /
    • pp.9-15
    • /
    • 2015
  • We investigated the Reynolds number effects on the flow over a twisted offshore structure in the range of 3×103≤ Re ≤ 1 × 104. To analyze the effect of the twisted surface treatment, a large eddy simulation (LES) with a dynamic subgrid model was employed. A simulation of the cylindrical structure was also carried out to compare the results with those of the twisted offshore structure. As Re increased, the mean drag and lift coefficient of the twisted offshore structure increased with the same tendency as those of the cylindrical structure. However, the increases in the mean drag and lift coefficient of the twisted offshore structure were much smaller than those of the cylindrical structure. Furthermore, elongated shear layer and suppressed vortex shedding from the twisted offshore structure occurred compared to those of the cylindrical cylinder, resulting in a drag reduction and suppression of the vortex-induced vibration (VIV). In particular, the twisted offshore structure achieved a significant reduction of over 96% in VIV compared with that of the cylindrical structure, regardless of increasing Re. As a result, we concluded that the twisted offshore structure effectively controlled the flow structures with reductions in the drag and VIV compared with the cylindrical structure, irrespective of increasing Re.

원통형 문풀 구조물의 탑재 시 변형과 수정 (Welding Deformation and Its Correction of Cylindrical Moon Pool Structure)

  • 성우제;천광산
    • 대한조선학회논문집
    • /
    • 제56권5호
    • /
    • pp.389-395
    • /
    • 2019
  • Turret mooring type Floating Production Storage and Offloading (FPSO) is designed to rotate the hull around a turret system. The system is mounted inside a cylindrical moon-pool structure of the ship hull structure. The upper part of the moon-pool structure called Bogie Support Structure (BSS) is supported on ring type rail structure (bogie), so high roundness is required at the top of the structure. In this study, the deformation measured during BSS installation was compared with the predicted values through the thermal elasto-plastic analysis, and the causes of deformation were analyzed. Deformation behavior of cylindrical structure with a very large diameter compared to the thickness was investigated. In addition, a proper welding sequence and correction method for the deformed structure were proposed. This study can be an example of the solution to the tolerance problem of large cylindrical structures.

쉘요소를 활용한 원통형 구조물의 좌굴에 대한 열적 영향평가 (Thermal Impact Evaluation on Buckling of Cylindrical Structures Using Shell Elements)

  • 조희근
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.7-15
    • /
    • 2021
  • Buckling of cylindrical structures has been extensively researched, because it is an important phenomenon to be considered in structural design. However, the evaluation of thermal effects on the buckling of cylindrical structures has been insufficient; therefore, this study evaluates this thermal effect using shell elements. In addition, the thermal effect on the buckling of temperature-dependent nonlinear materials was evaluated. Nonlinear and linear buckling analyses were performed using the arc-length method to investigate the behavioral characteristics of a cylindrical structure. The basic theory of the linear buckling analysis of a cylindrical structure subjected to thermal stress was derived and presented by applying the thermal stress basic theory.

부가수질량을 고려한 실린더형 풍력발전기타워의 동적응답연구 (A Study on the Dynamic Response of Cylindrical Wind Turbine Tower Considering Added Mass)

  • 손충렬;이강수;이정탁
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.348-358
    • /
    • 2008
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures is possibly only when the fluid-structures is understood, as the whole or part of the structure is in contact with water. Through the comparision between the experimental result and the finite element analysis result for a simple cylindrical model, it was verified that an added mass effects on the cylindrical structure. Using the commercial FEA program ANSYS(v.11.0), underwater added mass was superposed on the mass matrix of the structure. A frequency response analysis of forced vibration in the frequency considered the dynamic load was also performed. It was proposed to find the several important modes of resonance peak for these fixed cylindrical type structures. Furthermore, it is expected that the analysis method and the data in this study can be applied to a dynamic structural design and dynamic performance evaluation for the ground and marine purpose of power generator by wind.

  • PDF