• Title/Summary/Keyword: Cylindrical shells

Search Result 315, Processing Time 0.036 seconds

Application of Hamilton variational principle for vibration of fluid filled structure

  • Khaled Mohamed Khedher;Muzamal Hussain;Rizwan Munir;Saleh Alsulamy;Ayed Eid Alluqmani
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.401-410
    • /
    • 2023
  • Vibration investigation of fluid-filled three layered cylindrical shells is studied here. A cylindrical shell is immersed in a fluid which is a non-viscous one. Shell motion equations are framed first order shell theory due to Love. These equations are partial differential equations which are usually solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the wave propagation approach procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. It is also exhibited that the effect of frequencies is investigated by varying the different layers with constituent material. The coupled frequencies changes with these layers according to the material formation of fluid-filled FG-CSs. Throughout the computation, it is observed that the frequency behavior for the boundary conditions follow as; clamped-clamped (C-C), simply supported-simply supported (SS-SS) frequency curves are higher than that of clamped-simply (C-S) curves. Expressions for modal displacement functions, the three unknown functions are supposed in such way that the axial, circumferential and time variables are separated by the product method. Computer software MATLAB codes are used to solve the frequency equation for extracting vibrations of fluid-filled.

General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory

  • Nasihatgozar, M.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.151-176
    • /
    • 2017
  • This paper deals with general equations of motion for free vibration analysis response of thick three-layer doubly curved sandwich panels (DCSP) under simply supported boundary conditions (BCs) using higher order shear deformation theory. In this model, the face sheets are orthotropic laminated composite that follow the first order shear deformation theory (FSDT) based on Rissners-Mindlin (RM) kinematics field. The core is made of orthotropic material and its in-plane transverse displacements are modeled using the third order of the Taylor's series extension. It provides the potentiality for considering both compressible and incompressible cores. To find these equations and boundary conditions, Hamilton's principle is used. Also, the effect of trapezoidal shape factor for cross-section of curved panel element ($1{\pm}z/R$) is considered. The natural frequency parameters of DCSP are obtained using Galerkin Method. Convergence studies are performed with the appropriate formulas in general form for three-layer sandwich plate, cylindrical and spherical shells (both deep and shallow). The influences of core stiffness, ratio of core to face sheets thickness and radii of curvatures are investigated. Finally, for the first time, an optimum range for the core to face sheet stiffness ratio by considering the existence of in-plane stress which significantly affects the natural frequencies of DCSP are presented.

Numerical Method for Nonlinear Analysis of Composite Shells under Constant Lateral Pressure and Incremented In-plane Compression (일정 횡압력과 증분 압축하중을 동시에 받는 복합재 쉘의 비선형 해석을 위한 수치기법 연구)

  • 김진호;권진희
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.69-77
    • /
    • 2000
  • This paper presents a modified arc-length method for the nonlinear finite element analysis of a structure which is loaded in incremental and fixed forces, simultaneously. The main idea of the method is to separate the displacement term by the constant force from that by the incremental force. Presented method is applied to the nonlinear analysis of isotropic shell structures separately loaded by lateral pressure or compression, and shows the excellent agreement with previous results. As an illustrative example of the applicability of the present algorithm, a parametric study is performed on the nonlinear buckling analysis of composite cylindrical panels under the combined load of the incremented compression and the constant lateral pressure.

  • PDF

Analytical vibration of FG cylindrical shell with ring support based on various configurations

  • Hussain, Muzamal;Selmi, Abdellatif
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.557-568
    • /
    • 2020
  • In this study, the impact of ring supports around the shell circumferential has been examined for their various positions along the shell axial length using Rayleigh-Ritz formulation. These shells are stiffened by rings in the tangential direction. For isotropic materials, the physical properties are same everywhere where the laminated and functionally graded materials, they vary from point to point. Here the shell material has been taken as functionally graded material. The influence of the ring supports is investigated at various positions. These variations have been plotted against the locations of ring supports for three values of length-to-diameter ratios. Effect of ring supports with middle layer thickness is presented using the Rayleigh-Ritz procedure with three different conditions. The influence of the positions of ring supports for clamped-clamped is more visible than simply supported and clamped-free end conditions. The frequency first increases and gain maximum value in the midway of the shell length and then lowers down. The Lagrangian functional is created by adding the energy expressions for the shell and rings. The axial modal deformations are approximated by making use of the beam functions. The comparisons of frequencies have been made for efficiency and robustness for the present numerical procedure. Throughout the computation, it is observed that the frequency behavior for the boundary conditions follow as; clamped-clamped, simply supported-simply supported frequency curves are higher than that of clamped-simply curves. To generate the fundamental natural frequencies and for better accuracy and effectiveness, the computer software MATLAB is used.

Conformal $Al_{2}O_{3}$ nano-coating of ZnO nanowires (ZnO 나노와이어에 ALD 방법으로 균일하게 코팅된 $Al_{2}O_{3}$)

  • Hwang, Joo-Won;Min, Byung-Don;Lee, Jong-Su;Keem, Ki-Hyun;Kang, Myung-Il;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.47-50
    • /
    • 2002
  • ZnO nanowires were coated conformally with aluminum oxide ($Al_{2}O_{3}$) material by atomic layer deposition (ALD). The ZnO nanowires were first synthesized on a Si (100) substrate at $1380^{\circ}C$ from ball-milled ZnO powders by a thermal evaporation procedure with an argon carrier gas without any catalysts; the length and diameter of these ZnO nanowires are $20\sim30{\mu}m$ and $50{\sim}200$ nm, respectively. $Al_{2}O_{3}$ films were then deposited on these ZnO nanowires by ALD at a substrate temperature of $300^{\circ}C$ using trimethylaluminum (TMA) and distilled water ($H_{2}O$). Transmission electron microscopy (TEM) images of the deposited ZnO nanowires revealed that 40nm-thick $Al_{2}O_{3}$ cylindrical shells surround the ZnO nanowires.

  • PDF

Design of a Valveless Type Piezoelectric Pump for Micro-Fluid Devices

  • Kim, Hyun-Hoo;Oh, Jin-Heon;Yoon, Jae-Hun;Jeong, Eui-Hwan;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.65-68
    • /
    • 2010
  • The operation principle of a traveling wave rotary type ultrasonic motor can be successfully applied to the fluidic transfer mechanism of the micro-pump. This paper proposes an innovative valveless micro-pump type that uses an extensional vibration mode of a traveling wave as a volume transportation means. The proposed pump consists of coaxial cylindrical shells that join the piezoelectric ceramic ring and metal body, respectively. In order to confirm the actuation mechanism of the proposed pump model, a numerical simulation analysis was implemented. In accordance with the variations in the exciting wave mode and pump body dimension, we analyzed the vibration displacement characteristics of the proposed model, determined the optimal design condition, fabricated the prototype pump from the analysis results and evaluated its performance. The maximum flow rate was approximately $595\;{\mu}L/min$ and the highest back pressure was 0.88 kPa at an input voltage of $130\;V_{rms}$. We confirmed that the peristaltic motion of the piezoelectric actuator was effectively applied to the fluid transfer mechanism of the valveless type micro pump throughout this research.

Dynamic Stability Assessment of Pressure Hull in Deep Sea against Implosion Pressure Pulse (심해 환경 하에서 내파 충격파를 받는 내압 선체의 동적 좌굴 평가 기법)

  • Nho, In Sik;Cho, Sang Rai;Cho, Yoon Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.198-206
    • /
    • 2020
  • In this study, the dynamic structural behavior of pressure vessels due to pressure pulse initiated by implosion of neighbouring airbacked equipments including Unmanned Underwater Vehicles (UUV), sensor system, and so on were dealt with for the structural design and safety assessment of pressure hulls of submarine. The dynamic buckling and collapse responses of pressure vessel in deep sea were investigated considering the effects of initial hydrostatic pressure and fluid-structure interactions. The governing equations for circular cylindrical shells were formulated theoretically assuming a relatively simple displacement fields and the derived nonlinear simultaneous ordinary differential equations were analysed by developed numerical solution algorithm. Finally, the introduced safety assessment procedures for the dynamic buckling behaviors of pressure hulls due to implosion pressure pulse were validated by comparing the theoretical analysis results with those of experiments for examples of simple cylinders.

Linear and Nonlinear Stability Analysis of Shells Using Degenerated Isoparametric Elements (등매개(等媒介) 변수요소(變數要素)를 이용한 쉘의 선형(線形) 및 비선형(非線形) 안정해석(安定解析))

  • Lee, Nam Ho;Choi, Chang Koan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.21-28
    • /
    • 1987
  • The paper describes the analysis of large displacement problems including instability phenomena. The element used in this is a degenerated isoparametric shell element with eight nodes. Total Lagrangian formulation has been adopted in this study using Newton-Raphson iteration method with incremental load. The linear stability analyses performed usually for the initial position can be repeated at several advanced fundamental states on the non-linear buckling path. Thus a current estimate of the failure load is given. The numerical examples of a cylindrical panel under uniform load, simply supported plate under axial load, and clamped plate under uniform load are carried out. The examples applying degenerated isoparametric elements to bifurcation buckling and nonlinear collapse problems are also performed.

  • PDF

Nonlinear higher order Reddy theory for temperature-dependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture

  • Raminnea, M.;Biglari, H.;Tahami, F. Vakili
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.153-186
    • /
    • 2016
  • This paper addresses temperature-dependent nonlinear vibration and instability of embedded functionally graded (FG) pipes conveying viscous fluid-nanoparticle mixture. The surrounding elastic medium is modeled by temperature-dependent orthotropic Pasternak medium. Reddy third-order shear deformation theory (RSDT) of cylindrical shells are developed using the strain-displacement relations of Donnell theory. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on energy method and Hamilton's principal, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of system. The effects of different parameters such as mode numbers, nonlinearity, fluid velocity, volume percent of nanoparticle in fluid, gradient index, elastic medium, boundary condition and temperature gradient are discussed. Numerical results indicate that with increasing the stiffness of elastic medium and decreasing volume percent of nanoparticle in fluid, the frequency and critical fluid velocity increase. The presented results indicate that the material in-homogeneity has a significant influence on the vibration and instability behaviors of the FG pipes and should therefore be considered in its optimum design. In addition, fluid velocity leads to divergence and flutter instabilities.

Nonlinear static analysis of composite cylinders with metamaterial core layer, adjustable Poisson's ratio, and non-uniform thickness

  • Eipakchi, Hamidreza;Nasrekani, Farid Mahboubi
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.241-256
    • /
    • 2022
  • In this article, an analytical procedure is presented for static analysis of composite cylinders with the geometrically nonlinear behavior, and non-uniform thickness profiles under different loading conditions by considering moderately large deformation. The composite cylinder includes two inner and outer isotropic layers and one honeycomb core layer with adjustable Poisson's ratio. The Mirsky-Herman theory in conjunction with the von-Karman nonlinear theory is employed to extract the governing equations which are a system of nonlinear differential equations with variable coefficients. The governing equations are solved analytically using the matched asymptotic expansion (MAE) method of the perturbation technique and the effects of moderately large deformations are studied. The presented method obtains the results with fast convergence and high accuracy even in the regions near the boundaries. Highlights: • An analytical procedure based on the matched asymptotic expansion method is proposed for the static nonlinear analysis of composite cylindrical shells with a honeycomb core layer and non-uniform thickness. • The effect of moderately large deformation has been considered in the kinematic relations by assuming the nonlinear von Karman theory. • By conducting a parametric study, the effect of the honeycomb structure on the results is studied. • By adjusting the Poisson ratio, the effect of auxetic behavior on the nonlinear results is investigated.