• Title/Summary/Keyword: Cylindrical billet

Search Result 21, Processing Time 0.02 seconds

A Study on Cold Forging Process Design of a Terminal Pin for High-Voltage Capacitors (고압콘덴서용 단자핀의 냉간단조 공정설계에 관한 연구)

  • 김홍석;윤재웅;손일헌
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.586-593
    • /
    • 2004
  • A terminal pin, which is a part of high-voltage capacitors, has a plate-shaped head section with thickness of 0.8mm. The current manufacturing process, in which the head section is welded on the body part, has given wide deviations of part qualities such as geometrical accuracy, mechanical strength and electrical stability. In this study, a cold forging process sequence was designed in order to produce the terminal pin as one piece. The plate-shaped head section requires an upsetting in the lateral direction of a cylindrical billet, which is followed by a blanking process. The deformed geometry of the lateral upsetting, however, could not be predicted precisely by intuition since metal flows of an axial and a lateral direction of the cylindrical billet would occur simultaneously. Therefore, in this study, three dimensional finite element analyses were applied to the lateral upsetting process in order to determine a proper diameter and height of the cylindrical billet. Once the geometry of the initial billet was determined, intermediate forging processes were designed by applying cold forging guidelines and the designed process sequence was verified by two dimensional finite element analysis. In addition, cold forging tryouts were conducted by using a die set, which was manufactured based on the designed process and finally we found that the part qualities were improved by the proposed cold forging process.

Variation in Microstructural Homogeneity and Mechanical Properties of Extruded Mg-5Bi Alloy Via Controlling Billet Shape (빌렛 형상 제어를 통한 Mg-5Bi 합금 압출재의 조직 균일도 및 기계적 물성 변화)

  • Jin, S.C.;Cha, J.W.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.344-350
    • /
    • 2022
  • Extruded Mg-Bi binary alloys are known to have an undesirable bimodal grain structure containing a large amount of coarse unrecrystallized grains. Accordingly, to improve the microstructural homogeneity of extruded Mg-Bi alloys, it is necessary to promote the dynamic recrystallization (DRX) behavior during hot extrusion. An effective way to promote DRX is an increase in nucleation sites for DRX through a pre-deformation process before extrusion, such as cold pre-forging and hot pre-compression. However, the application of these pre-deformation processes increases the cost of final extruded Mg products because of an increase in energy consumption and decrease in productivity. Therefore, a low-cost new continuous process with high productivity is required to improve the microstructural homogeneity and mechanical properties of extruded Mg alloys without a drastic increase in the entire process cost. This study proposes a new extrusion method using an extrusion billet with a truncated cone shape (i.e., tapered billet) instead of a conventional extrusion billet with a cylindrical shape. When the hot extrusion of a Mg-5Bi alloy is conducted using the tapered billet, the DRX behavior during extrusion is considerably promoted. The DRX fraction and average grain size of the extruded alloy significantly increase and decrease from 65% to 91% and from 225 ㎛ to 49 ㎛, respectively. Consequently, the extruded Mg-5Bi alloy fabricated using the tapered billet has a finer homogeneous grain structure and higher tensile elongation than the extruded counterpart fabricated using the cylindrical billet.

Process Design in Superplastic Forging of a Jet Engine Disk by the Finite Element Method (유한요소법을 이용한 제트엔진 디스크의 초소성 단조공정설계)

  • 이진희;강범수;김왕도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.876-886
    • /
    • 1994
  • Process design in superplastic forming to produce a Nickel-base jet engine disk has been carried out using the rigid-viscoplastic finite element method. This study aims at deriving systematic procedures in forging of superalloy engine disk, and develops a simple scheme to control strainrate within a range of superplastic deformation during the forging operation. The new process, a pancake type preform being used, is designed to have less manufacturing time, and more even distribution of effective strain in the final product, while the conventional superplastic forging of an engine disk has been produced from a cylindrical billet. The jet engine company, Pratt & Whitney, provided the basic information on the manufacturing process of superplastic forging of a jet engine disk.

A Study on the Process Design for Forming of Control Arm (컨트롤 암 성형을 위한 공정설계에 대한 연구)

  • Lee, O.Y.;Kim, K.S.;Yeo, H.T.;Chun, S.Y.;Hur, K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.365-367
    • /
    • 2009
  • The use of aluminum alloy has been interested in the automotive industry, because of its specific strength. And hollow extruded billet is more attractive than solid extruded billet but its forming application has to be precisely processed to satisfy the product quality. In this research, the process design of forming of control arm for the vehicle was studied by press bending process with hollow extruded billet. The middle protrusion portions and the middle cylindrical cup were processed separately according to the analysis. It was concluded that a useful sequence is to bend the side flange and the middle protrusion portions firstly, and then to form the middle cylindrical cup.

  • PDF

Void Closing Conditions of Large Ingot by Path Schedules (대형 잉곳의 기공압착 효과 향상을 위한 폐쇄조건 연구)

  • Choi, I.J.;Choi, H.J.;Kim, D.W.;Choi, S.;Lim, S.J.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.480-485
    • /
    • 2010
  • In this work, the closing behavior of cylindrical-shaped voids was experimentally investigated according to various parameters such as reduction ratio in height, initial void size and billet rotation during hot open die forging process. The reduction ratio in height, number of path, and billet rotation were chosen as key process parameters which influence the void closing behavior including the change of void shape and size. On the other hand, values of die overlapping and die width ratio were set to be constant. Void closing behavior was estimated by microscopic observation. Based on the observations, it was confirmed that application of billet rotation is more efficient to eliminate the void with less reduction ratio in height. The experimental results obtained from this study could be helpful to establish the optimum path schedule of open die forging process.

Cold Forging Process Design of a Terminal Pin for High-Voltage Capacitors (고압콘덴서용 단자핀의 냉간단조 공정설계)

  • 김홍석;윤재웅;송종호;문인석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.210-215
    • /
    • 2003
  • A terminal pin, which is a part of high-voltage capacitors, has a head section of plate-shaped geometry with 0.8 thickness. The current manufacturing process, in which the head section is welded on the body part, has given wide deviations of part qualities such as geometrical accuracy, mechanical strength and electrical stability. In this paper, a cold forging process sequence was designed in order to produce the terminal pin as one piece. The plate-shaped head section requires an upsetting in the lateral direction of a cylindrical billet, which is followed by a blanking process. The deformed geometry of the upsetting, however, could not be predicted precisely by intuition since metal flows of an axial and a lateral direction of the cylindrical billet would occur simultaneously. Therefore, the geometry of the initial billet was determined by three dimensional finite element analysis in order to avoid defects in blanking process and intermediate forging processes were designed by applying design rules and two dimensional FE analysis. In addition, cold forging tryouts were conducted by using the die sets which were manufactured based on the designed process sequence.

  • PDF

Upper-bound Analysis for Cold Forging of Helical Gear ( II ) (헬리컬 기어의 냉간단조에 관한 상계해석 (II))

  • Choi, Jae-Chan;Tak, Sung-Jun;Choi, Young
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.144-149
    • /
    • 1996
  • In this paper, the clamping type forging of helical gears has been investigated. Clamping type forging is an operation in which the product is constrained to extrude sideways through an orifice in the container wall. Punch is cylindrical shaped. The punch compresses a cylindrical billet placed in a die insert. As a consequence the material flows in a direction perpendicular to that of punch movement. The forging has been analysed by using the upper-bound method. A kinematically admissible velocity field has been developed, wherein, an involute curve has been introduced to represent tooth profile of the gear. Numerical calculations have been carried out to investigate the effects of various parameters, such as module, number of teeth, helix angle, friction factor and initial height of billet on the forging of helical gears.

  • PDF

A Study on Extrusion Process of Cylindrical Product with Helical Fins Using Rotating Extrusion Die (회전압출다이를 사용한 헬리컬 핀붙이 원형단면 제품의 압출가공에 관한 연구)

  • Park S. M.;Jin I. T.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.444-451
    • /
    • 2005
  • A new extrusion process of the circular section product with helical fins could be developed by rotating extrusion die. The twisting of extruded product is caused by the twisted conical die surface connecting the die entrance section and the die exit section linearly. But, until now, because the process has used fixed extrusion die, it needs high pressure in order to twist billet and form fin shape on the surface of billet. So, during extruding billet, in order not to twist billet, the extrusion die is needed to rotate itself instead of twisting of billet. It is known that it is possible to reduce extrusion load of product with helical fins by analysis and experiments using rotating die. And it is known that, through the extrusion load analysis by $DEFORM^{TM}-3D$ software, optimal rotational velocity of rotating die can be obtained according to reduction ratio of area and twisted angle of die. And experiments and analysis using rotating extrusion die show that the twisted angle of product can be controlled by twisted angle of extrusion helical die and the rotational velocity of extrusion helical die.

A Study on the Forming Characteristics of Radial Extrusions (레이디얼압출의 성형특성에 관한 연구)

  • 이수형;황병복
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.604-611
    • /
    • 1999
  • This paper is concerned with the family of parts that generally feature a central hub with radial protrusions. As opposed to conventional forward and backward extrusion, in which the material flows in a direction parallel to that of the punch or die motion, the material flows perpendicular to the punch motion in radial extrusion. Three variants of radial extrusion of a collar or flange are investigated. Case I involves forcing a cylindrical billet against a flat die, Case II involves deformation against a stationary punch recessed in the lower die, and Case III involves both the upper and lower punches moving together toward the center of the billet. Extensive simulational work is performed with each case to see the process conditions in terms of forging load, balanced and symmetrical flow in the flange. Also, the effect of the gap size and die corner radii to the material flow are investigated. In this study, the forming characteristics of radial extrusion will be considered by comparing the forces, shapes etc. The design factors during radial extrusion are investigated by the rigid-plastic FEM simulation.

  • PDF

Automatic Process Design System for Cold Forging of Fasteners with Various Head Geometries (다양한 머리 형상을 갖는 체결구의 냉간 단조 자동 공정 설계 시스템)

  • 김홍석;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.141-148
    • /
    • 1994
  • In order to improve the productivity of cold forging at low production cost, an integrated system's approach is necessary in handling the material preparation and the optimum process design, considering the forming machines, tooling, and operation including quality control. As the first step toward this approach, an expert system for multi-stage cold forging process design for fasteners with various head geometries is developed using Prolog language on IBM 486 PC. For effective representation of the complex part geometries, the system uses the multiple element input, and the forward inference scheme in determination of the initial billet size and intermediate forging steps. In order to determine intermediate steps, the basic empirical rules for extrusion, heading, and trimming were applied. The required forming loads and global strain distributions at each forging step were calculated and displayed on the PC monitor. The designed process sequence drawing can be obtained by AutoCAD. The developed system will be useful in reducing trial and error of design engineers in determining the diameter and height of the initial cylindrical billet from the final product geometry and the intermediate necessary sequences.

  • PDF