• Title/Summary/Keyword: Cylindrical baffles

Search Result 19, Processing Time 0.022 seconds

The Efficiency Prediction for Plate Type Steam Reformer with Shape Change of Combustion Chamber (평판형 STR의 연소공간 형상변화에 따른 성능 예측)

  • Kim, Hun-Ju;Lee, Ji-Hong;Lee, Myeong-Yong;Lee, Sang-Seok;Lee, Do-Hyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.286-294
    • /
    • 2010
  • According to the propagation of fuel cell system, the importance of that system efficiency is being magnified. Thus, the efficiency improvement of reformer which is the important part of fuel cell system will be required. In structural aspect, the reformer is classified into cylindrical and plate type. Plate type reformer features better maintenance and space efficiency compared with cylindrical type. In this study, we changed the shape of combustion chamber to improve the reforming efficiency. And then we performed the CFD simulation to predict the spacial distribution of temperature. Analysis cased contains with baffles, fins, baffles and fins, and without those. In case of only with-baffle, temperature distributions were uneven because the high temperature stream was concentrated near the baffle end. In case of with-fin, the temperature distributions were relatively even than other cases.

A Study on the Acoustic Baffle to Reduce Ghost Target According to Structure behind Cylindrical Array Sensor (원통형 배열센서 후면 구조물에 의해 발생하는 허위 표적 감소를 위한 음향 배플 연구)

  • Seo, Young Soo;Kim, Dong Hyun;Kim, Jin Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.440-446
    • /
    • 2015
  • Acoustic signal is emitted from a vessel and received by a cylindrical array sensor at some distance from the vessel. Acoustic signal is the source for a cylindrical array sensor which is designed to detect the acoustic signal. Cylindrical array sensors seldom have an ideal hydrodynamic shape and are not sufficiently robust to survive without some protection and they are normally housed in a sonar dome. Reflected signals by some structure inside a sonar dome make unwanted signals. Therefore, an acoustic baffle is used to minimize unwanted signals. The performance of the acoustic baffles can be determined from the acoustic numerical analysis at the design stage. In this study, finite element method was used to analyze the acoustic field around the cylindrical array sensor and baffle effects. The baffle performance can be defined the echo reduction. To show the baffle performance, the specimens were made for pulse tube test and echo reductions were measured during the test. In this paper, the effect of echo reduction of the acoustic baffle was discussed.

Numerical Analysis of Flow Phenomena in Cylindrical Shell with Baffle according to the Position of Inlet and Outlet (출.입구 위치에 따른 배플을 갖는 원통내 유동특성에 대한 수치해석)

  • Shin, Y.H.;Sayeed, S.M.;Jean, Y.C.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.22-26
    • /
    • 2011
  • A numerical simulation on the flow field was carried out on the cylindrical shell with baffles. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. The effect of the location of inlet and outlet on the cylindrical shell with baffle is investigated by varying flow rate. The angle between the location of In/Outlet and baffle cutting part is $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$, $120^{\circ}$, $150^{\circ}$ and $180^{\circ}$. The present results show that the pressure drop is dependent on Reynolds number in the inlet area and position of inlet and outlet; i.e., the pressure drop increases with increasing Reynolds number and the pressure drop decreases with increasing angle between baffle cutting part and position of inlet and outlet.

Finite Element Analysis of Sloshing Eigen Behavior in Horizontal Baffled Fuel Tank (수평으로 놓인 배플형 연료탱크의 슬로싱 고유거동에 관한 유한요소 해석)

  • 조진래;하세윤;이홍우;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.619-628
    • /
    • 2002
  • This paper deals with the FE analysis for the free vibration of sloshing in horizontal cylindrical tank with baffles. We use Laplace equation based on potential theory as governing equation. This problem is solved by FEM using lineal isoparametric elements. We assume that the tank as well as baffles is rigid body and by separating nodes into two at the baffle location, baffle effect is obtained by separating nodes into two at the baffle location. For the calculation of natural frequencies and mode shapes, we introduce Lanczos transformation and Jacobi iteration methods. Numerical results of the first longitudinal and transverse modes, while comparing with literature cited, are very good. In order for the baffle effects on the free vibration of sloshing, various combinations of baffle parameters, which are location, inner diameter and number, are examined.

Sloshing Reduction Characteristics to Baffle for Cylindrical Liquefied Fuel Tank subject to Dynamic Load (동하중을 받는 원통형 액화연료 탱크의 배플에 따른 슬로싱 저감 특성)

  • Koo, Jun-Hyo;Cho, Jin-Rae;Jeong, Weui-Bong;Kim, Dang-Ju
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.950-959
    • /
    • 2009
  • Liquid fluctuation called sloshing within liquid-storage tank gives rise to the significant effect on the dynamic stability of tank. This liquid sloshing can be effectively suppressed by installing baffles within the tank, and the suppression effect depends strongly on the design parameters of baffle like the baffle configuration. The present study is concerned with the parametric evaluation of the sloshing suppression effect for the CNG-storage tank, a next generation liquefied fuel for vehicles, to the major design parameters of baffle, such as the baffle configuration, the installation angle and height, the hole size of baffle. The coupled FEM-FVM analysis was employed to effectively reflect the interaction between the interior liquid flow and the tank elastic deformation.

Dynamic Suppression Effects of Liquid Container to the Baffle Number and Hole Diameter (배플개수 및 내경변화에 따른 액체 저장탱크의 동억제 효과)

  • 조진래;김민정;이상영;허진욱
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.147-154
    • /
    • 2002
  • The dynamic load caused by sloshing of internal fluid severely affects the structural and control stabilities of cylindrical liquid containers accelerating vertically. If the sloshing frequency of fluid is near the frequency of control system or the tank structure, large dynamic force and moment act on launching vehicles. For the suppression of such dynamic effects, generally flexible ring-type baffles are employed. In this paper, we perform the numerical analysis to evaluate the dynamic suppression effects of baffle. The parametric analysis is performed with respect to the baffle inner-hole diameter and two different baffle spacing types : equal spacing with respect to the tank and one with respect to the fluid height. The ALE (arbitrary Lagrangin-Eulerian) numerical method is adopted for the accurate and effective simulation of the hydrodynamic interaction between fluid and elastic structure.

Conditions for Rapid Processing of Modified Fish Sauce using Enzymatic Hydrolysis and Improvement of Product Quality 1. Fish Sauce from Mackerel Waste and Its Quality (효소분해법에 의한 개량어장유의 속성제조 및 품질에 관한 연구 1. 고등어 폐기물을 이용한 어장유의 속성제조 및 품질)

  • HAN Bong-Ho;BAE Tae-Jin;CHO Hyun-Duk;KIM Jong-Chul;KIM Byeong-Sam;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.2
    • /
    • pp.109-124
    • /
    • 1990
  • A rapid processing method for fish sauce of high quality stability and favorable flavor was investigated using mackerel waste as starting material. The chopped waste was homogenized with water and hydrolyzed by commercial proteolytic enzymes such as Complex enzyme-2000($2.18\cdot10^4$ U/g solid, Pacific Chem. Co.) and Alcalase ($1.94\cdot10^4$ U/g solid, Novo) in a cylindrical vessel with 4 baffles and 6-bladed turbine impeller. Optimal pH and temperature for the hydrolysis with Complex enzyme-2000 were 8.0 and $50^{\circ}C$, and those with Alcalase were 9.0 and $55^{\circ}C$. In both cases, the reasonabe amount of added water and enzyme concentration based on the waste weight were $40\%,\;3\%$ and hydrolyzing time was 100 min. Thermal treatment of the hydrolysate with $6\%$ of invert sugar for 2 hours at $90^{\circ}C$ was adequated to inactivation of the enzymes and pasteurization of the hydrolysate. Flavor, taste and color of the hydrolysate were improved during the thermal treatment in which the browning reaction products might participate and result in antioxidative and bactericidal effects. Combined use of $0.005\%$ of Caryophylli flos with $6\%$ of invert sugar was also effective for the improvement of taste. Yield of the fish sauce based on the total nitrogen of the raw waste was $93.7\~94.9\%$, and $87.6\~87.9\%$ of the total nitrogen in the fish sauce was in the from of amino nitrogen. The pH, salinity and histamine content of the fish sauce prepared with $15\%$ of table salt were $6.1\~6.2$, $14.0\~14.5\%$ and less than $10mg\%$, respectively. The fish sauce was stable on bacterial growth during the storage of 60 days at $26\pm3^{\circ}C$ and the quality was also maintained.

  • PDF

Conditions for Rapid Processing of Modified Fish Sauce using Enzymatic Hydrolysis and Improvement of Product Quality 2. Fish Sauce from Sardine Waste and Its Quality (효소분해법에 의한 개량어장유의 속성제조 및 품질에 관한 연구 2. 정어리 폐기물을 이용한 어장유의 속성제조 및 품질)

  • BAE Tae-Jin;HAN Bong-Ho;CHO Hyun-Duk;KIM Jong-Chul;KIM Byeong-Sam;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.2
    • /
    • pp.125-136
    • /
    • 1990
  • To develope a rapid processing method for fish sauce, processing conditions of fish sauce from sardine waste was investigated. The chopped waste was homogenized and hydrolyzed by commercial proteolytic enzymes such as Complex enzyme-2000($2.18\cdot10^4$ U/g solid) and Alcalase($1.94\cdot10^4$ U/g solid) in a cylindrical vessel with 4 baffles and 6-bladed turbine impeller. Optimal temperature for the case of hydrolysis with Complex enzyme-2000 was 50 and that with Alcalase was $55^{\circ}C$. In both cases, the reasonable pH, amount of water for homo-genization, enzyme concentration and hydrolyzing time were 8.0, $40\%$ (W/W), $3\%$ and 100 min, respectively. Heating of the filtrated hydrolysate for 2 hours at $90^{\circ}C$ with $6\%$ of invert sugar was suitable for pasteurization of the hydrolysate and inactivation of enzymes. Flavor, taste and color of the hydrolysate was improved during the thermal treatment in which the browning reaction products might participate and result in antioxidative and bactericidal effects. Combined use of $0.005\%$ of Caryophylli flos with invert sugar was also effective for the improvement of taste. Yield of the fish sauce based on the total nitrogen in the raw sardine waste was $91.2\~92.3\%$ and $87.2\~87.8\%$ of the total nitrogen in the fish sauce was in the form of amino nitrogen. The pH, salinity and histamine content of the fish sauce prepared with $15\%$ of table salt were $6.1\~6.2$, $14.2\~14.4\%$ and less than $10mg\%$, respectively. The fish sauce was stable during the storage of 60 days at $26\pm3^{\circ}C$ on bacterial growth and its quality was also maintained.

  • PDF

Conditions for Rapid Processing of Modified Fish Sauce using Enzymatic Hrdrolysis and Improvement of Product Quality 3. Fish Sauce from Whole Sardine and Its Quality. (효소분해법에 의한 개량어장유의 속성제조 및 품질에 관한 연구 3. 정어리 전어체를 이용한 어장유의 속성제조 및 품질)

  • BAE Tae-Jin;HAN Bong-Ho;CHO Hyun-Duk;KIM Byeong-Sam;LEE Hyun-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.5
    • /
    • pp.361-372
    • /
    • 1990
  • Processing conditions of whole sardine into modified fish sauce were investigated. Thawed and chopped sardine was homogenized and hydrolyzed using commercial proteolytic enzymes such as complex enzyme-2000($2.18{\cdot}10^4U/g solid$) and alcalase($1.94{\cdot}10^4\;U/g solid$) in a cylindrical vessel with 4 baffles and 6-bladed impeller. Optimal pH, enzyme concentration and temperature for the hydrolysis with complex enzyme-2000 were 7.0, $7\%$ (W/W) and $52^{\circ}C$, and-those with alcalase were 8.0, $6\%$ (W/W) and $60^{\circ}C$. In both cases, the reasonable amount of water for homogenization, agitation speed and hydrolyzing time were $100\%$ (W/W), 100 rpm and 210 minutes. Thermal treatment of the filtered hydrolysate at $90^{\circ}C$ for 2 hours with $6\%$ of invert sugar was adequated to inactivation of the enzymes and pasteurization of the hydrolysate. Flavor, taste and color of the hydrolysate were improved during the heating process in which the browning products might participate. The content of free amino nitrogen in the fish sauce seasoned with $15\%$ of table salt was ca. $1,640 mg\%$. Yield of the fish sauce based on the contents of proteinous and free amino nitrogen in the raw whole sardine was ca. $86\%$, and ca. $96\%$ of these compounds of the fish sauce was in the form of free amino nitrogen. The pH, salinity and histamine content of the fish sauce were $6.1\~6.3,\;14.2\~14.3\%$ and less than $10\;mg\%$.

  • PDF