Loading [MathJax]/jax/output/CommonHTML/jax.js
  • Title/Summary/Keyword: Cylindrical Tank

Search Result 157, Processing Time 0.038 seconds

Baffled fuel-storage container: parametric study on transient dynamic characteristics

  • Lee, Sang-Young;Cho, Jin-Rae;Park, Tae-Hak;Lee, Woo-Yong
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.653-670
    • /
    • 2002
  • In order to ensure the structural dynamic stability of moving liquid-storage containers, the flow motion of interior liquid should be appropriately suppressed by means of mechanical devices such as the disc-type elastic baffle. In practice, the design of a suitable baffle requires a priori the parametric dynamic characteristics of storage containers, with respect to the design parameters of baffle, such as the installation location and inner-hole size, the baffle number, and so on. In this paper, we intend to investigate the parametric effect of the baffle parameters on the transient dynamic behavior of a cylindrical fuel-storage tank in an abrupt vertical acceleration motion. For this goal, we employ the ALE (arbitrary Lagrangian-Eulerian) kinematic description method incorporated with the finite element method.

Axisymmetrical free-vibration analysis of liquid-storage tanks considering the liquid compressibility

  • Cho, Jin-Rae;Lee, Jin-Kyu
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.355-368
    • /
    • 2002
  • In this paper, we address the numerical investigation on the effect of liquid compressibility onto the natural frequency of liquid-filled containers. Traditionally the liquid motion has been treated as an ideal fluid motion. However, from the numerical experiments for the axisymmetrical free-vibration of cylindrical liquid-storage tanks, we found that the relative difference in natural frequencies between ideal and compressible motions becomes remarkable, as the slenderness of tank or the relative liquid-fill height becomes larger. Therefore, in such cases of dynamic systems, the liquid compressibility becomes an important parameter, for the accurate vibration analysis. For the free-vibration analysis of compressible liquid-structure interaction we employed the coupled finite element formulation expressed in terms of the acoustic wave pressure and the structure deformation.

NUMERICAL SIMULATION OF FLOWS INDUCED BY WALL ADHESION (벽면흡착에 의해 야기되는 유동 수치해석)

  • Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.2-5
    • /
    • 2011
  • This paper presents a numerical study on multiphase flows induced by wall adhesion The CSF(Continuum Surface Force} model is used for the calculation of the surface tension force and implemented in an in-house solution code(PowerCFD). The present method(code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with volume capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing As an application of the present method, the effects of wall adhesion are numerically simulated with the CSF model for a shallow pool of water located at the bottom of a cylindrical tank. Two different cases are computed, one in which the water wets the wall and one in which the water does not wet the wall. It is found that the present method simulates efficiently and accurately surface tension-dominant multiphase flows induced by wall adhesion.

  • PDF

Prevent Air-core During Draining with Semi Spherical Mesh (반구형 그물망을 이용한 배수시 생성되는 공기 기둥 억제 연구)

  • Han, Eun-Su;Park, Il-Seouk;Sohn, Chang-Hyun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.38-43
    • /
    • 2011
  • When draining takes place through an axially located drain port in a cylindrical tank without any prevent, a vortex with an air core occurs. In this study, semi spherical concave and convex meshes with different size inner hole are used to find the air core can suppress. The study is carried out with different values of inner hole of mesh and different install direction of semi spherical mesh using PIV and measured velocity distribution. By providing a mesh, the air core can be prevented, even if the ratio of inner hole of mesh and diameter of cylinder is around 0.66. The experimental results show that a convex mesh type is more effective to suppress the air core generation than a concave mesh type.

A Study on Partial Discharge Location in Insulating Oil using Optical Fiber Sensors (광섬유 센서를 이용한 절연유내의 부분방전 위치검출에 관한 연구)

  • 권태호;이종길;이준호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.838-841
    • /
    • 2003
  • This paper shows results on the application of optical fiber sensors(OFS) for locations of ultrasonic signals in silicon insulating oil. The OFS system based on the principle of Sagnac interferometry has been designed and established for this work. The hollowed cylindrical mandrel wound by single mode optical fiber was used as a sensing component and ultrasonic signals which simulate the partial discharge In the oil have been generated by PZT actuator operated with function generator. The experimental results shows that the OFS has a excellent performance for the PD location with resolutions less than 1C error range in the miniature insulating oil tank.

Free Surface Oscillation in Sloshing Problem Predicted with ALE Method

  • Ushijima Satoru
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.11-22
    • /
    • 1999
  • A numerical prediction method has been proposed to predict non-linear free surface oscillation in a three-dimensional container. The fluid motions are numerically predicted with Navier-Stokes equations discretized in a Lagrangian scheme with sufficient numerical accuracy. The profile of a free surface is precisely represented with three-dimensional body-fitted coordinates (BFC), which are regenerated in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) formulation. In order to confirm the reliability of the computational method, it was firstly applied to three-dimensional flows within complicated-shaped rigid boundaries, such as curved pipes and ducts. Than it was applied to benchmark computations related to free surface oscillations. Following these basic verifications, non-linear sloshings in a cylindrical tank and transitions from sloshing to swirling motions were numerically predicted. Throughout these computations, the applicability of the present computational method has been confirmed and some of the predicted free surface motions were visualized as sequential images and animations to understand their dynamic futures.

  • PDF

Role of membrane forces in seismic design of reinforced concrete liquid storage structures

  • Schnobrich, W.C.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.533-543
    • /
    • 2000
  • To prevent major cracking and failure during earthquakes, it is important to design reinforced concrete liquid storage structures, such as water and fuel storage tanks, properly for the hydrodynamic pressure loads caused by seismic excitations. There is a discussion in recent Codes that most of the base shear applied to liquid containment structures is resisted by inplane membrane shear rather than by transverse flexural shear. The purpose of this paper is to underline the importance of the membrane force system in carrying the base shear produced by hydrodynamic pressures in both rectangular and cylindrical tank structures. Only rigid tanks constrained at the base are considered. Analysis is performed for both tall and broad tanks to compare their behavior under seismic excitation. Efforts are made to quantify the percentage of base shear carried by membrane action and the consequent procedures that must be followed for safe design of liquid containing storage structures.

Wave Forces Acting on Large Vertical Circular Cylinder and Consequent Wave Transformations by Full-Nonlinear Analysis Method after Wave Breaking (강비선형해석법에 의한 대형연직원주구조물에 작용하는 쇄파후의 파력 및 파랑변형)

  • Lee, Kwang-Ho;Shin, Dong-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.401-412
    • /
    • 2008
  • Simulations of three-dimensional numerical wave tank are performed to investigate wave force acting on a large cylindrical structure and consequent wave deformation, which are induced by bore after breaking waves. The numerical model is based on the three-dimensional Navier-Stokes equations with a finite-difference method combined with a volume of fluid(VOF) method, which is capable of tracking the complex free surface, including wave breaking. In order to promote wave breaking of the incident wave, the approach slope was built seaward of the structure with a constant slope and a large cylindrical structure was installed on a flat bed. The incident waves were broken on the approach slope or flat bed by its wave height. In the present study, all waves acting on the large cylindrical structure were limited to breaking bore after wave breaking. The effects of the position of the structure and the incident wave height on the wave force and wave transformations were mainly investigated with the concern of wave breaking. Further, the relations between the variation of wave energy by wave propagation after wave breaking and wave force acting on the structure were discussed to give the understanding of the full-linear wave-structure interactions in three-dimensional wave fields.

Program Development on the Thermofluidodynamic Analysis of LNG Storage Tanks (LNG 저장탱크의 종합 열유동 해석프로그램 개발)

  • Kim Hoyeon;Choi Sunghee;Bak Young;Lee Junghwan;Yoon Ikkeun;Kim Donghyuk;Ha Jongmann;Joo Sangwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.52-61
    • /
    • 2001
  • Cryogenic LNG(Liquefied Natural Gas) which is stored in the cylindrical storage tanks of 100,000m3 has very complex flow phenomena and the changes of thermal properties with exterior conditions and operation modes. These complex thermofluid behaviors are affected by the storage, exterior conditions of LNG, design specifications and heat transfer characteristics of tanks. Also, those have influence on the stable storage and supply of LNG in the storage tanks. Thus this study peformed the analysis on the 2-D heat transfer of the tank with exterior conditions, on the Cool Down Process in order to cool down the LNG Storage Tank at the initial normal state, and on the Filling Process considered for incoming and rising of LNG. The analysis on the Mixing LNG Storage was studied too. At last, the visualized program on the complex thermofluidodynamic analysis was developed on the basis of the above analyses. The development of this program becomes to be used to the basic design of the commercial tanks as well as to assure technical skill of the analysis on the thermal stability of the stored LNG in the LNG Storage Tank.

  • PDF

The Optomotor Response of Killifish and Yellowtail (송사리와 방어의 시각운동반응)

  • Jang, Choong-sik;Lee, Byoung-gee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 1983
  • The authors carried out an experiment to find the optomotor response of killifish, Orizias latipes(TEMMINCK et SCHLEGEL) and Yellowtail, Seriola quinqueradiata (TEMMINCK et SCHLEGEL) according to the colors of the netting pattern on the visual screen and the revolving velocities of the visual screen. The experimental water tank was made of 0.5 cm thick transparent acryl in the cylindrical shape (100R×42H cm). The water level in the tank was maintained 30cm high from the bottom. The colors of the netting pattern (mesh size: 19.1cm, width of netting twine: 1.5cm, hanging ratio: 84%) on the three visual screens were black, red and green respectively. The revolving velocities of the visual screen were controlled by pulley, bevel gear and variable speed motor in three steps; slow (15.0cm/sec), middle (37.4cm/sec) and high (62.9cm/sec). The fish was put into the water tank before each experiment and released in it for 30 minutes in order to acclimatize itself to the tank. The visual screen was revolved for 4 minutes per each experiment, at first the fish was released for 1 minute, and then the behavior of the fish was observed for 3 minutes. In the course of clockwise and counter clockwise experiments, 10 minutes-pause was given for the rest. The behavior of the fish was observed by video system, and rounding number and swimming speed of the fish were analysed. The results obtained are as follows: (1) Optomotor response rate of Killifish and yellowtail were 95% and 94% respectively. (2) Response of the fish according to the colors of the netting pattern on the three visual screens was best in black, and second in red and third in green. (3) Response of the fish according to the revolving velocities of the visual screen was best in high speed, and second in middle speed and third in slow speed.

  • PDF