• Title/Summary/Keyword: Cylindrical Structure

Search Result 661, Processing Time 0.027 seconds

Numerical Study on the Structural Behavior Accorded by Pre-weakening Before Demolishing a Cylindrical Structure (원통형 구조물의 발파해체를 위한 사전 취약화에 따른 구조물의 안정에 관한 수치해석적 연구)

  • Park, Hoon;Suk, Chul-Gi;Kim, Seung-Kon
    • Explosives and Blasting
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this study, the structural behavior accorded by pre-weakening before demolishing a cylindrical structure was investigated to ensure structural stability using 3 dimensional applied element method (3D AEM). An opening angle of crushed area for the pre-weakening was changed to examine the displacement behavior of the cylindrical structure. This study shows that the crushing range for pre-weakness must be below 40% to void the collapse of the cylindrical silo structure.

Wave Deformation by Large Cylindrical Structures (근접설치된 대형구조물에 의한 구조물주변의 파의 변형)

  • 김창제;김정렬
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.1 no.2
    • /
    • pp.61-67
    • /
    • 1995
  • This study examines experimentally and theoretically, the wave deformation by two large cylindrical structure in relation to the case of one structure. The wave height around the structures varies, according to the changes of the incident wave angles, the number of the structure, and the distances between the two structures. The wave deformation around the large cylindrical structures is shown to be well predicted theoretically by the diffraction theory based on the singular point distribution method using a vertical line wave source Green's function.

  • PDF

Wave Deformation and Blocking Performance by a Porous Dual Semi-Cylindrical Structure (투과성 이중 반원통 구조물에 의한 파 차단성능)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.10-17
    • /
    • 2010
  • The interaction of oblique incident waves with a porous dual semi-cylindrical structure is investigated under the assumption of linear potential theory. The porous dual semi-cylindrical structure consists of two concentric bottom-mounted cylindrical structures that are porous in front half and transparent in back half. By changing porosity, gap, and wave characteristics(wave frequencies, incidence angle), the wave blocking performance as well as the wave loads and the wave run-up are obtained. As a convenient measure of overall wave blocking performance, the root mean square(R.M.S.) of the wave elevation in a sheltered region is used. It is found that the porous semi-cylindrical structure may significantly reduce the wave response in a sheltered region and the wave forces decrease largely compared to the impermeable structure. The dual structure is more effective in reducing the wave response in a sheltered region than the mono type in the region of high frequencies.

Vibration Analysis of Water-loaded Cylindrical Array Structures (원통형 배열 구조물의 접수진동 해석)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;Seo, Hee-Seon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.175-182
    • /
    • 2009
  • This paper summarizes a solution procedure for a large cylindrical structure mounted underneath a ship as a sonar. Vibration analysis of the water loaded structure is required to enhance the structural reliability as well as acoustic performance of the sonar. It is, however, often very difficult to solve such structures since they have many DOFs, considering the frequency of interest and the water-loading. The mode mapping method is proposed and verified to take into account the water-loading with the minimum DOF for the analysis. The cyclic symmetric method is then reviewed to show how the eigen properties of the full model can be obtained from the representative segment model. The solution procedure is finally proposed and applied successfully for a simplified water-loaded cylindrical array structure.

Vibration Analysis of Waterloaded Cylindrical Aarray Structures (주기대칭법을 이용한 원통형 배열 구조물의 접수진동 해석)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;Seo, Hee-Seon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1054-1059
    • /
    • 2007
  • This paper summarized a solution procedure for a large cylindrical structure mounted underneath a ship as a sonar. Vibration analysis of the water loaded structure is required to enhance the structural reliability as well as acoustic performance of the sonar. It is, however, often very difficult to solve such structures since they have many DOFs, considering the frequency of interest and the waterloading. The cyclic symmetric method is firstly reviewed to show how the eigen properties of the full model can be obtained from the representative segment model. The mode mapping method is then proposed and verified to take into account the waterloading with the minimum DOF for the analysis. The solution procedure is finally proposed and applied for a waterloaded cylindrical array structure.

  • PDF

Forced vibration response in nanocomposite cylindrical shells - Based on strain gradient beam theory

  • Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.381-388
    • /
    • 2018
  • In this paper, forced vibration of micro cylindrical shell reinforced by functionally graded carbon nanotubes (FG-CNTs) is presented. The structure is subjected to transverse harmonic load and modeled by beam model. The size effects are considered based on strain gradient theory containing three small scale parameters. The mixture rule is used for obtaining the effective material properties of the structure. Based on sinusoidal shear deformation theory of beam, energy method and Hamilton's principle, the motion equations are derived. Applying differential quadrature method (DQM) and Newmark method, the frequency curves of the structure are plotted. The effect of different parameters including, CNTs volume percent and distribution type, boundary conditions, size effect and length to thickness ratio on the frequency curves of the structure is studied. Numerical results indicate that the dynamic deflection of the FGX-CNT-reinforced cylindrical is lower with respect to other type of CNT distribution.

Electric field strength effect on bi-stability of composite thin cylindrical shell with piezoelectric layer

  • Yaopeng Wu;Nan Zheng;Yaohuan Wu;Quan Yang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.571-578
    • /
    • 2024
  • The bistable thin cylindrical shell is developable structure with the ability to transition between its two stable configurations. This structure offers significant potential applications due to its excellent deformability. In this paper, the composite thin cylindrical shell consisting of the composite layer and the piezoelectric layer was investigated. The material and geometric parameters of the shell were found to influence its stable characteristics. The analysis model of the composite thin cylindrical shell incorporating the piezoelectric layer was developed, and the expressions for its strain energy were derived. By applying the minimum energy principle, the impact of the electric field intensity on the bi-stable behaviors of the cylindrical shell was analyzed. The results showed that the shell exhibited the bistability only under the appropriate electric field strength. And the accuracy of the theoretical prediction was verified by simulation experiments. This study provides an important reference for the application of deployable structures.

A Case Study on Explosive Demolition of Cylindrical Silo (원통형 사일로 발파해체 시공사례)

  • Park, Hoon;Jang, Seong-Ok;Park, Hyong-Ki;Kim, Nae-Hoi;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.52-63
    • /
    • 2008
  • Recently the demand of demolition for the unnecessary cylindrical silo structure is increasing due to deterioration and unsatisfactory functional conditions and the issue of demolition is becoming a major highlight. This case study introduced the explosive demolition of the cylindrical silo structure by felling method. The results of explosive demolition conducted on cylindrical silo structure using the felling method show, A silo had collapsed precisely according to estimated direction but in case of B silo there was a minor difference. The lower colunms and ring girder support was designed to the hinge line but in reality the lower colunms of the silo did not do its structural support role and only the ring girder support did its role successfully. As for the impact vibration, most of the measurements were within the estimated range.

Evaluation of Characteristics for Stress Distribution on Cylindrical Beam Structure by Deformation and Restoration Process (변형 및 복원공정에 따른 실린더 형상 구조물의 응력분포 특성)

  • Park Chi-Yong;Kim Jin-Weon;Boo Myung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.132-138
    • /
    • 2005
  • In heavy industrial fields such as power plant and chemical plant, it is often necessary to restore damaged part of large machinery and structure which is installed in the hazard working place. In this paper, to estimate stress distribution which occurs during damage and restoration of cylindrical beam structure, the finite element technique has been used. A finite element model was verified by experiment for non deformed cylindrical beam structure. The displacements and elastic recovery have an excellent agreement between experiment and finite element analysis. The variations of stress distribution on deformation and restoration procedure for surfaces have been examined. The maximum von Mises stress appears in the surface for deformation and restoration procedure. In deformation procedure, the maximum stress occurs in the vicinity of support body. In restoration procedure, the maximum stress occurs in the vicinity of the fixing body. The fixing body allows avoiding stress concentration in adjacent support structure boundary.

Free Vibrations of Fluid-filled Cylindrical Shells on Partial Elastic Foundations (부분 탄성지지된 유체 저장 원통셸의 자유진동)

  • Jung, Kang;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.763-770
    • /
    • 2012
  • The free vibration characteristics of fluid-filled cylindrical shells on partial elastic foundations are investigated by an analytical method. The cylindrical shell is fully or partially surrounded by the elastic foundations, these are represented by the Winkler or Pasternak model. The motion of shell is represented by the first order shear deformation theory to account for rotary inertia and transverse shear strains. The steady flow of fluid is described by the classical potential flow theory. The fluid-structure interaction is considered in the analysis. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. To validate the present method, the numerical example is presented and compared with the available existing results.