• Title/Summary/Keyword: Cylindrical Anchorage

Search Result 5, Processing Time 0.02 seconds

Ultimate Behavior of Steel Beam Strengthened with External Tendonand Cylindrical Anchorage (원통형 정착구를 사용하고 외부 긴장재로 보강된 강재보의 극한거동)

  • Choe, Dong-Ho;Jeong, Sang-Hwan;Jung, Jae-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.102-110
    • /
    • 2006
  • This paper examines experimentally the ultimate behavior of I-type steel beam strengthened with external tendon and cylindrical anchorage and analyzes the strengthening effect on the parameters such as initial tendon force, eccentricity, number of strands, and strand areas. The experiment demonstrated that increasing the number of strands, strand areas and eccentricity is more effective than increasing initial tendon force. The proposed cylindrical anchorage system has advantages in applying these parameters. The results showed that the cylindrical anchorage system is efficient and applicable to strengthen steel beam.

Geometrical design characteristics of orthodontic mini-implants predicting maximum insertion torque

  • Katic, Visnja;Kamenar, Ervin;Blazevic, David;Spalj, Stjepan
    • The korean journal of orthodontics
    • /
    • v.44 no.4
    • /
    • pp.177-183
    • /
    • 2014
  • Objective: To determine the unique contribution of geometrical design characteristics of orthodontic mini-implants on maximum insertion torque while controlling for the influence of cortical bone thickness. Methods: Total number of 100 cylindrical orthodontic mini-implants was used. Geometrical design characteristics of ten specimens of ten types of cylindrical self-drilling orthodontic mini-implants (Ortho Easy$^{(R)}$, Aarhus, and Dual Top$^{TM}$) with diameters ranging from 1.4 to 2.0 mm and lengths of 6 and 8 mm were measured. Maximum insertion torque was recorded during manual insertion of mini-implants into bone samples. Cortical bone thickness was measured. Retrieved data were analyzed in a multiple regression model. Results: Significant predictors for higher maximum insertion torque included larger outer diameter of implant, higher lead angle of thread, and thicker cortical bone, and their unique contribution to maximum insertion torque was 12.3%, 10.7%, and 24.7%, respectively. Conclusions: The maximum insertion torque values are best controlled by choosing an implant diameter and lead angle according to the assessed thickness of cortical bone.

Influence of the shape of head anchors on the durability of reinforced concrete elements

  • Martinez-Echeverria, M. Jose;Gil-Martin, Luisa Maria;Montero, Jose Rodriguez;Hernandez-Montes, Enrique
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • This paper looks into how the shape of headed bars may influence the durability of reinforced concrete structures. Nowadays the only heads used in site works are cylindrical in shape. An alternative shape of head is studied in this piece of work. The new head reduces the concentration of stresses and so the appearance of cracks. In this work durability is studied based on both, first cracking and failure mode. An experimental campaign of 12 specimens and finite element modelling are described. The specimens were subjected to an accelerated corrosion process using an electrical current supply. Direct current was impressed on the specimens until breaking. Test results and the results obtained from numerical models are presented. Results are presented in term of comparison between the two shapes of heads studied. It was shown that the shape of the head has a significant influence on durability of reinforced concrete structures with headed reinforcing bars.

Mechanical analysis of the taper shape and length of orthodontic mini-implant for initial stability (교정용 미니임플랜트의 초기 안정성에 대한 원추형태와 길이에 관한 기계역학적 분석)

  • Kim, Jong-Wan;Cho, Il-Sik;Lee, Shin-Jae;Kim, Tae-Woo;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.36 no.1 s.114
    • /
    • pp.55-62
    • /
    • 2006
  • Orthodontic mini-implants, despite its usefulness as anchorage, have some limits such as loosening. Therefore, various shapes and lengths have been studied. The aim of this study is to analyze the shape and length of mini-implants mechanically. The shapes of mini-implants (1.6 mm, Dual Top, Jeil Medical Co., Seoul, Korea) were cylindrical and taper. The lengths of mini-implants were 6 mm and 8 mm. The tested groups were 5 groups (cylindrical 6 mm, cylindrical 8 mm, taper 6 mm, taper 8 mm and taper 8 mm modified whose thread is reduced from the middle to upper part). All were inserted and removed on the polyurethane foam with the torque measured. During insertion and removal, the taper shape needed higher torque than the cylindrical shape, and the 8 mm length than the 6 mm length (p<0.001). The taper 6mm group showed superior insertion torque (p<0.001) and similar removal torque to the cylindrical 8 mm group. The taper 8 mm modified group with gradually reduced threads, showed continuous high removal torque after the peak. The initial mechanical stability can be provided by the tapered shape and also, affected by length and thread design.

Effect of Bone Quality on Insertion Torque during Implant Placement; Finite Eelement Analysis (임플란트 식립 시 골질이 주입회전력에 미치는 영향에 관한 삼차원 유한요소 분석)

  • Jeong, Jae Doug;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.109-123
    • /
    • 2009
  • The aim of the study was to assess the influence of insertion torque of bone quality and to compare axial force, moment and von Mises stress using finite element analysis of plastoelastic property for bone stress and strain by dividing bone quality to its thickness of cortical bone, density of trabecular bone and existence of lower cortical bone when implant inserted to mandibular premolar region. The $Br{\aa}nemark$ MKIII. RP implant and cylindrical bone finite model were designed as cortical bone at upper border and trabecular bone below the cortical bone. 7 models were made according to thickness of cortical bone, density of trabecular bone and bicortical anchorage and von Mises stress, axial force and moment were compared by running time. Dividing the insertion time, it seemed 300msec that inferior border of implant flange impinged the upper border of bone, 550msec that implant flange placed in middle of upper border and 800msec that superior border of implant flange was at the same level as bone surface. The maximum axial force peak was at about 500msec, and maximum moment peak was at about 800msec. The correlation of von Mises stress distribution was seen at both peak level. The following findings were appeared by the study which compared the axial force by its each area. The axial force was measured highest when $Br{\aa}nemark$ MKIII implant flange inserts the cortical bone. And maximal moment was measured highest after axial force suddenly decreased when the flange impinged at upper border and the concentration of von Mises stress distribution was at the same site. When implant was placed, the axial force and moment was measured high as the cortical bone got thicker and the force concentrated at the cortical bone site. The influence of density in trabecular bone to axial force was less when cortical bone was 1.5 mm thick but it might be more affected when the thickness was 0.5 mm. The total axial force with bicortical anchorage, was similar when upper border thickness was the same. But at the lower border the axial force of bicortical model was higher than that of monocortical model. Within the limitation of this FEA study, the insertion torque was most affected by the thickness of cortical bone when it was placed the $Br{\aa}nemark$ MKIII implant in premolar region of mandible.