• 제목/요약/키워드: Cylindrical

검색결과 4,345건 처리시간 0.033초

축대칭 원통 탄성 셸의 진동음향 : 평면 모드의 벽 임피던스 (Vibroacoustics of Axisymmetric Cylindrical Elastic Shells : Wall Impedance of the Plane Mode)

  • 박찬일
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.930-936
    • /
    • 2008
  • Fluid loading of a vibrating cylindrical shell has influence on natural frequencies and vibration magnitudes of the shell and the acoustic pressure of fluid. The vibroacoustics of fluid-filled cylindrical shells need the coupled solution of Helmholtz equation and governing equation of a cylindrical shell with boundary conditions. This paper proposed the wall impedance of fluid-filled axisymmetric cylindrical shells, focusing on the inner fluid/shell interaction. To propose the impedance, shell displacements used the linear combination of in vacuo shell modes. Acoustic pressure prediction of fluid used Kirchhoff-Helmholtz integral equation with Green's function of the plane mode. For the demonstration of the proposed results, numerical applications on mufflers were conducted.

Thermal buckling analysis of functionally graded sandwich cylindrical shells

  • Daikh, Ahmed Amine
    • Advances in aircraft and spacecraft science
    • /
    • 제7권4호
    • /
    • pp.335-351
    • /
    • 2020
  • Thermal buckling of functionally graded sandwich cylindrical shells is presented in this study. Material properties and thermal expansion coefficient of FGM layers are assumed to vary continuously through the thickness according to a sigmoid function and simple power-law distribution in terms of the volume fractions of the constituents. Equilibrium and stability equations of FGM sandwich cylindrical shells with simply supported boundary conditions are derived according to the Donnell theory. The influences of cylindrical shell geometry and the gradient index on the critical buckling temperature of several kinds of FGM sandwich cylindrical shells are investigated. The thermal loads are assumed to be uniform, linear and nonlinear distribution across the thickness direction. An exact simple form of nonlinear temperature rise through its thickness taking into account the thermal conductivity and the inhomogeneity parameter is presented.

원통셸의 엄밀이론에 관한 고찰 (Study On the Exact Theory of Cylindrical Shells)

  • 김천욱;이영신
    • 대한기계학회논문집
    • /
    • 제2권2호
    • /
    • pp.31-37
    • /
    • 1978
  • In order to specify the accuracy of the cylindrical shell theories, several cylindrical shell equations are studied. Cheng's equation is used as the exact theory for circular cylindrical shells. An error factor is defined and used for the measure of the accuracy in various cylindrical shell theories. The line load applied along generators of a thin-walled circular cylidrical shell of finite length is investigated as a numerical example. These numerical results show that Cheng's equation is used for the fundamental cylindrical shell equation and the difficulties in cumputation by a digital computer are same as the simplified equations, such as Donnell's Morley's, and Vlasov's equations.

직교축상의 회전운동용 롤러 종동절을 수반하는 원통형 캠의 형상설계를 위한 상대속도법에 관한 연구 (A study on relative velocity approach for shape desing to cylindrical cam with rotating roller follower on faced-vertical axes)

  • 김성원;신중호;강동우;장세원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.612-615
    • /
    • 2000
  • Cam mechanism is one of the common devices used in many automatic machinery. Specially cylindrical cam generates three dimensional motions. Thus, the shape design procedures must have high accuracy. This paper proposes the shape design procedure for a cylindrical cam and follower mechanism using a relative velocity method. The relative velocity method and the coordinate transformation are used to find a contact point between the cam and the follower. Also, the full shape of the cylindrical cam can be generated by using the geometric relationships and the contact constraints. As a result, this paper presents an example for the shape design of the cylindrical cam in order to prove the accuracy of the design procedures.

  • PDF

환원판 덮개를 갖는 원통형 연료탱크의 진동해석 (Vibration of Liquid-filled Cylindrical Storage Tank with an Annular Plate Cover)

  • 김영완
    • 한국소음진동공학회논문집
    • /
    • 제13권10호
    • /
    • pp.751-759
    • /
    • 2003
  • The theoretical method is developed to investigate the vibration characteristics of the sloshing and bulging mode for the circular cylindrical storage tank with an annular plate on free surface. The cylindrical tank is filled with an inviscid and incompressible liquid. The liquid domain is limited by a rigid cylindrical surface and a rigid flat bottom. As the effect of free surface waves Is taken into account in the analysis, the bulging and sloshing modes are studied. The solution for the velocity potential of liquid movement is assumed as a suitable harmonic function that satisfies Laplace equation and the relevant boundary conditions. The Rayleigh-Ritz method is used to derive the frequency equation of the cylindrical tank. The effect of Inner-to-outer radius ratio and thickness of annular plate and liquid volume on vibration characteristics of storage tank is studied. The finite element analysis is performed to demonstrate the validity of present theoretical method.

상대속도를 이용한 자동공구교환장치용 원통 캠의 형상 설계에 관한 연구 (A Study on Shape Design Approach of Cylindrical Cam for Automatic Tool Changer Using Relative Velocity)

  • 김성원;신중호;강동우;장세원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.813-817
    • /
    • 2000
  • Cam mechanism is one of the common devices used in many automatic machinery. Specially cylindrical cam generates three dimensional motions. Thus, the shape design procedure must have high accuracy. This paper proposes the shape design procedure for a cylindrical cam and follower mechanism using a relative velocity method. The relative velocity method and coordinate transformation are used to find a contact point between cam and follower. Also, the full shape of the cylindrical cam can be generated by using the geometric relationships and the contact constraints. As a result, this paper presents an example for the sape design of the cylindrical cam in order to prove the accuracy of the design procedures.

  • PDF

원통형쉘 구조물의 점가진 입력파워 추정 (Input Power Estimation of Point Loaded Cylindrical Shell)

  • 이경현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.250-257
    • /
    • 2011
  • The power input to an infinite cylindrical shell excited by a point force is investigated. The circumferential direction and axial direction of the cylindrical shell is assumed as a two-dimensional unbounded medium, and the point force is replaced as a periodic array of imaginary sources. The spatial Fourier transform is taken from the equation of motion of the cylindrical shell, which is derived from the static model of Donell-Mushtari-Vlasov. The inverse Fourier transform is taken to derive the vibration responses. Mobility from out-of-plane forces and in-plane forces are derived from the obtained vibration responses. The theory is applied to a cylindrical shell excited by a normal direction of point force.

  • PDF

원통형셸의 초고주파 동적특성을 위한 등가평판모델 (An Equivalent Plate Model for the High-Frequency Dynamic Characteristics of Cylindrical Shells)

  • 이준근;이우식
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.108-113
    • /
    • 1999
  • For cylindrical shells, the closed-form solutions are confined to the specific boundary and/or loading conditions. Though the finite element method is certainly a powerful solution approach for the structural dynamics problems, it has been well known to provide the solution reliable only in the low frequency region due to the inherent high sensitivities of structual and numerical modeling errors. Instead, the spectral element method has been proved to provide accurate dynamic characteristics of a structure even at the ultrasonic frequency region. Since the wave characteristic of a cylindrical shell becomes identical to that fo a flat plate as the frequency increases, an equivalent plate model (EPM) representing the high-frequency dynamic characteristics of the cylindrical shell is introduced herein. The EPM-based spectral element analysis solutions are compared with the known analytical solutions for the cylindrical shells to confirm the validity of the present modeling approach.

  • PDF

ON THE GAUSS MAP OF GENERALIZED SLANT CYLINDRICAL SURFACES

  • Kim, Dong-Soo;Song, Booseon
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제20권3호
    • /
    • pp.149-158
    • /
    • 2013
  • In this article, we study the Gauss map of generalized slant cylindrical surfaces (GSCS's) in the 3-dimensional Euclidean space $\mathbb{E}^3$. Surfaces of revolution, cylindrical surfaces and tubes along a plane curve are special cases of GSCS's. Our main results state that the only GSCS's with Gauss map G satisfying ${\Delta}G=AG$ for some $3{\times}3$ matrix A are the planes, the spheres and the circular cylinders.

An efficient Galerkin meshfree analysis of shear deformable cylindrical panels

  • Wang, Dongdong;Wu, Youcai
    • Interaction and multiscale mechanics
    • /
    • 제1권3호
    • /
    • pp.339-355
    • /
    • 2008
  • A Galerkin meshfree method is presented for analyzing shear deformable cylindrical panels. Based upon the analogy between the cylindrical panel and the curved beam a pure bending mode for cylindrical panel is rationally constructed. The meshfree approximation employed herein is characterized by an enhanced moving least square or reproducing kernel basis function that can exactly represent the pure bending mode and thus meets the requirement of Kirchhoff mode reproducing condition. The variational form is discretized using the efficient stabilized conforming nodal integration with a smoothed nodal gradient based curvature. The resulting meshfree formulation satisfies the integration constraint for bending exactness. Moreover, it is shown here that the smoothed gradient preserves several desired properties which are valid for the standard gradient obtained by direct differentiation, such as partition of nullity and reproduction of a constant strain field. The efficacy of the proposed approach is demonstrated by two benchmark cylindrical panel examples.