• Title/Summary/Keyword: Cylinder oil

Search Result 318, Processing Time 0.022 seconds

Evaluation of removal performance of a novel two-stage cylinder type cyclone against water and oil droplets (2단 실린더형 싸이클론의 물 및 오일 액적 제거 성능 분석 연구)

  • Kim, Sumin;Kim, Hak-Joon;Kim, Myungjoon;Han, Bangwoo;Woo, Chang Gyu;Kim, Yong-Jin
    • Particle and aerosol research
    • /
    • v.13 no.3
    • /
    • pp.119-125
    • /
    • 2017
  • A novel two stage cylindrical cyclone was developed for a 3 phase separator in shale oil production industry. The cyclone performance was compared with a cone type cyclone and multi cyclone at the same experimental condition using water and oil mists generated by a humidifier and atomizer at the flow rate 1 to $2m^3/min$. The removal efficiency of total suspended water droplets by the novel cyclone, calculated using inlet and outlet concentrations measured by an optical particle counter, was 99% which is higher than 90% of oil droplet removal efficiency at $2m^3/min$. It might be due to the evaporation of small water droplets during the tests. The water and oil droplet removal performance of the novel cyclone based on the quality factor which is a function of pressure drop and removal efficiency was the highest among three cyclones. The results indicate that the cyclone could be an economical device to remove water and oil mists from shale gas generation processes where a huge three phase separator is commonly used.

Study on Wear of Journal Bearings during Start-up and Coast-down Cycles of a Motoring Engine - II. Analysis Results (모터링 엔진의 시동 사이클 및 시동 정지 사이클에서 저어널베어링의 마모 연구 - II. 해석 결과)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.125-140
    • /
    • 2015
  • In this paper, we present the results of the wear analysis of journal bearings on a stripped-down single-cylinder engine during start-up and coast-down by motoring. We calculate journal bearing wear by using a modified specific wear rate considering the fractional film defect coefficient and load-sharing ratio for the asperity portion of a mixed elastohydrodynamic lubrication (EHL) regime coupled with previously presented graphical data of experimental lifetime linear wear in radial journal bearings. Based on the calculated wear depth, we obtain a new oil film thickness for every crank angle. By examination of the oil film thickness, we determine whether the oil film thickness at the wear scar region is in a mixed lubrication regime by comparing dimensionless oil film thickness, h/σ, to 3.0 at every crank angle. We present the lift-off speed and the crank angles involved with the wear calculation for bearings #1 and #2. The dimensionless oil film thickness, h/σ, illustrates whether the lubrication region between the two surfaces is still within the bounds of the mixed lubrication regime after scarring of the surface by wear. In addition, we present in tables the asperity contact pressure, the real minimum film thickness at the wear scar region, the modified specific wear rate, and the wear angle, α, for bearings #1 & #2. To show the real shape of the oil film at wear scar region, we depict the actual oil film thickness in graphs. We also tabulated the ranges of bearing angles related with wear scar. We present the wear volume for bearings #1 and #2 after one turn-on and turn-off of the engine ignition switch for five kinds of equivalent surface roughness. We show that the accumulated wear volume after a single turn-on and turn-off of an ignition switch normally increases with increasing surface roughness, with a few exceptions.

Sluice Gates Control Monitoring of Oil Pressure-Machine Using FDC Tuning Control Technique (FDC 동조제어기법을 이용한 유압-기계식 수문 제어 모니터링)

  • Heo, Gwanghee;Kim, Chunggil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.337-342
    • /
    • 2010
  • Generally most sluice gates are closed and opened by a mechanical winch, a winch using an oil-pressure, or a winch mixing both. Because of their size and structure, they should be safely operated with more than two pulling devices helping each other. At the moment of their opening and closing, there usually occur some additional loads to the structure which cannot be exactly measurable at the stage of designing. Such additional loads can cause the sluice gate to be unbalanced and make it hard to open and close the gate, and by also overloading a winch, they can inflict a significant damage to the safety of the sluice gate. This paper explains a FDC(Force-Displacement Control) system which simultaneously considered the oil-pressure and displacement in order to evenly distribute the force and make a winch balanced at the opening and closing motion. This FDC system was implemented by means of the PID(Proportional Integral Derivative) function of XG 5000 program. It was experimented on a model of the sluice gate winch with the hydraulic oil pressure cylinder. The experiments showed that the developed FDC system made the winch of hydraulic oil pressure cylinder open and close cooperatively in spite of various external loads. Therefore the FDC system is proven effective when it is applied to a winch of sluice gate.

The Combustion Characteristics of Biodiesel Fuel as an Alternative Fuel for D.I. Diesel Engine (직접분사식 디젤기관에서 바이오디젤 연료의 연소특성)

  • Jang, S.H.;Suh, J.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.12-17
    • /
    • 2008
  • Biodiesel fuel(BDF) which is easily produced from vegetable oils such as soybean oil and rice bran oil can be effectively used as an alternative fuel in diesel engine. But biodiesel fuel can affect the performance and emissions in diesel engine because it has different chemical and physical properties from diesel fuel. To investigate the combustion characteristics of biodiesel fuel as an alternative fuel for D.I. diesel engine, the experiments were carried out at the three-cylinder, four stroke D.I. diesel engine with T/C. Experimental parameters adopted a conventional diesel fuel and a blend of biodiesel fuel derived from soybean. As a result of experiments in a test engine, BSFC with blend of BDF resulted in higher than with diesel fuel. The ignition delay decreased with blend of BDF than with diesel fuel.

  • PDF

Combustion Characteristics of Biodiesel Fuel (바이오 디젤 연료의 연소특성)

  • Yoon, Seung-Hyun;Park, Sung-Wook;Kwon, Sang-Il;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.146-151
    • /
    • 2004
  • The characteristics of combustion and emission of biodiesel fuel were investigated in a single cylinder DI diesel engine equipped with a common rail injection system. For investigating the effect of bio diesels, the experiments were conducted at various mixing ratio and engine operation conditions. Experimental results show that combustion pressure increased with the increase of mixing ratio and injection pressure. The HC and CO emissions are decreased and NOx emission is increased as the mixing ratio of biodiesels increases at 100MPa injection pressure. However the results of the emissions are shown the contrary to the results at 50MPa of injection pressure due to larger droplets of biodiesel sprays.

  • PDF

Simulation of Natural Gas Injected Dual-Fuel DI 2-Stroke Diesel Engine (천연가스를 파이럿오일과 이원공급하는 직접분사식 2행정 디이젤기관의 시뮬레이션)

  • Choi, In Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.9-18
    • /
    • 1995
  • The substitution of conventional fuel oil by alternative fuels is of immense interest due to liquid oil shortage and requirements of emission control standard. Among the alternative fuels, natural gas may be the most rational fuel, because of its widespread resource and clean est burning. Meanwhile, engine simulation is of great importance in engine development. Hence a zero-dimensional combustion model was developed for dual-fuel system. Natural gas was injected directly into the cylinder and small amount of distillate was used to provide the ignition kernel for natural gas burning. The intake air and exhaust gas flow was modeled by filling and emptying method. Although the single zone approach has an inherent limitation, the model showed promise as a predictive tool for engine performance. Its simulation was also made to see how the engine performance was influenced by the fuel injection timings and amount of each fuel.

  • PDF

A Basic Study on Piston-Ring Pack (피스톤-링 팩에 관한 기초 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.21 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • A piston assembly is very important because it directly receives the energy generated during combustion process. Surely, the friction and lubrication of piston-ring pack do an important role in the performance and fuel economy of an engine. In fact, the friction loss in piston-ring pack is the biggest portion to the whole engine friction. Therefore, the improvement of lubrication quality and friction loss in piston-ring pack will be directly related with the improvement in the performance and fuel economy of an engine. Meanwhile, the oil consumption and blow-by gas through piston-cylinder-ring crevices have to be controlled as less as possible. In these two aspects, the study on the optimized design of piston-ring pack has to be carried out. In this study, for the efficient design of piston-ring pack, it is focused to develop a basic computer program that predicts the inter-ring pressure, the motion of ring and the blow-by gas through a crevice volume model between adjacent rings, and the oil film thickness and the friction computed by lubrication theories.

An Experimental Study on Frictional Characteristics of the Piston Ring (피스톤 링 마찰 특성의 실험적 연구)

  • Lee, Jae-Seon;Han, Dong-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.115-122
    • /
    • 1999
  • A friction tester to measure friction force generated at the interface between the piston ring and the cylinder liner was developed. Modified piston ring is bar-shaped and 100mm long. Surface of the modified piston ring is machined by the profile grinding machine to be formed as a shape of an arc of a circle. Measured data are treated as mean effective friction force and power loss. From this test it can be confirmed that friction force is deeply affected by surface shape of the piston ring and viscosity of supplied oil. Friction force is deeply affected by surface shape of the piston ring and viscosity of supplied oil. Friction force is decreased and power loss is increased with increasing velocity. And it is known that region of mixed lubrication is broader than estimated with theoretical analysis. it is expected that this tester can be used as the optimization tool of the surface shape of the piston ring at the first stage of development of the piston rings.

  • PDF

The Wear charactericstics and Machinability to The type of Cast-iron of The Slot part of cylinder for Rotary compressor (로타리압축기 실린더 Slot부의 주조조직에 따른 가공표면 및 마모특성에 관한 연구)

  • 김동한
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.77-82
    • /
    • 1998
  • The Part of slot on rotary compressor which plays an important part of the reliability and performance is studied on machinability and the wear characteristics for the specimen made by sand mold and permanent mold. The experiment are used the face cutter of milling machine which make the processing surface like broaching process and rollblock wear test machine. Permanent-mold casting iron is not affected by variation of RPM of milling machine, but sand-mold cast-iron is improved to increasing RPM. Also sand-mold casting iron shows superior wear characteristic to permanent-mold casting iron. This results from harder matrix of pearlite structure and self-lubrication characteristics of graphite. And wear particles in tested oil show shape and size similar to severe wear particles of oil taken from rotary compressor. The material and surface condition of slot play important part of the reliability and performance.

  • PDF

A Study on the Stroke Sensitive Shock Absorber (변위 감응형 충격흡수기에 관한 연구)

  • 박재우;주동우;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.85-90
    • /
    • 1997
  • In the stroke sensitive shock absorber, the oil path is formed along the internal cylinder surface to make the eli flow during piston's upper-lower reciprocation movement. With constraint to the conventional shock absorbers which show one dynamic characteristic curve, stroke sensitive shock absorber shows two kins of dynamic characteristic according to the stroke, In the study, analysis on the damping force generation process and dynamic behaviour characteristics of stroke sensitive shock absorber is performed, the valve characteristics being considered more precise information about design and damping performance analysis.

  • PDF