• 제목/요약/키워드: Cylinder liner wear

검색결과 32건 처리시간 0.022초

대형 저속 디젤 엔진용 실린더 라이너 내면 마모량 자동 측정 장치 개발 (Development of Automatic Measuring Device for Cylinder Liner Wear Amount in Large Two Stroke Diesel Engine)

  • 김장규;이민철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.981-988
    • /
    • 2008
  • This paper describes a development of automatic measuring device for cylinder liner wear amount. An operator should regularly measure the wear amount of the cylinder liner to prevent the wear amount of the cylinder liner from exceeding the maximum limit specific to the engine type. In previous methods. an operator entered the inside of the cylinder liner on a ladder and measured the amount of wear using a inside micrometer. Such method is unpleasant in severe environments and full of hazards. In addition, in order to enter the cylinder, the piston head had to be detached. requiring much time and money. In order to solve these problems, a new measuring device that consists of two measuring units and a special install jig is developed. The measuring units are installed through the scavenging air port by the install jig and measures the wear amount during 1 revolution of crankshaft. so detaching of the cylinder head and entering inside the cylinder liner are not required.

디젤엔진 실린더 라이너-피스톤 링의 코팅 층 강도에 따른 마모특성 연구 (Effect of Coating Layer Hardness on the Wear Characteristics of Diesel Engine Cylinder liner-Piston Ring)

  • 장정환;김정훈;김창희;문영훈
    • 소성∙가공
    • /
    • 제17권5호
    • /
    • pp.343-349
    • /
    • 2008
  • The wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. This study will discuss characteristics of wear between hard and soft piston ring coatings with running surface of cylinder liner. Detailed tribological analysis by using Pin-on-Disk(POD) testing machine describes the lubricity mechanism between piston ring coatings and cylinder liner at different temperature with and without oil. The effect of surface roughness of the cylinder liner on the friction coefficient and wear amount of piston ring coatings will also be analyzed. To simulate scuffing mechanism between piston ring and cylinder liner, accelerated lab testing was performed. This study will provide the data from tribological testing of hard and soft piston ring coatings against cylinder liner. Furthermore, the microstructures and morphological features of the surface and the near-surface materials during wear will be investigated. From the scuffing test by using POD testing machine, scuffing mechanisms for the soft and hard coating will be analyzed and experimentally confirmed.

가속마모시험에 의한 피스톤 링/라이너의 마찰마모특성 평가 (Evaluation of Tribological Properties on Piston Ring/Liner Using Accelerative Wear Test)

  • 송근철;김정운;심동섭
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.75-78
    • /
    • 2004
  • Engine power cylinder parts are faced with more severe wear and friction environment. For instance, emission gas recirculation (EGR), one of the most valid technologies related to emission legislation, is known to accelerate wear of piston ring and cylinder liner. Therefore, advanced materials and surface treatments have been developed and adopted successively so that a need exists for an accurate and repeatable friction and wear bench test for various combination of piston ring and cylinder liner that more closely relates to engine test result. This paper introduces accelerative bench wear test method for piston ring and cylinder liner, presents the experimental result of friction and wear properties of piston ring surface treatments that noticed in substitution for hard chrome plating.

  • PDF

A Study on Effect of Recirculated Exhaust Gas upon Wear of Cylinder Liner and Piston in Diesel Engines

  • 배명완
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1524-1532
    • /
    • 2001
  • The effects of recirculated exhaust gas on the wear of cylinder liner and piston were experimentally investigated by a two-cylinder, four cycle, indirect injection diesel engine operating at 75% lo ad and 1600 rpm. For the purpose of comparison between the wear rates of the two cylinders with and without EGR, the recirculated exhaust gas was sucked into one of two cylinders after the soot in exhaust emissions was removed by an intentionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diameter), while only the fresh air was inhaled into the other cylinder. These experiments were carried out with the fuel injection timing fixed at 15.3$^{\circ}$ BTDC. It was found that the mean wear rate of cylinder liner with EGR was greater in the measurement positions of the second half than those of the first half, that the mean wear rate without EGR was almost uniform regardless of measurement positions, and that the wear rate of piston skirt with EGR increased a little bit, but the piston head diameter increased, rather than decreased, owing to soot adhesion and erosion wear, and especially larger with EGR.

  • PDF

열소성변형공정을 시행한 회주철제 실린더 라이너의 재료물성에 관한 연구 (A Study on the Material Properties of Grey Cast Iron for Cylinder Liner Treated by Thermo Plastic Deformation Process)

  • 김태형;김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.671-677
    • /
    • 2005
  • In internal combustion engines the usual material for the cylinder liner is because of its good wear resistance Apparently this wear resistance arises from the at iron to form a hard glazed surface when under sliding friction. When the cylinder liner wear limits, it shall be replace with new one according to the classification soci manufacturer's standards. However, adoption of alternative repairing method such a metalizing, thermo plastic deformation process became inevitable taking enormous cost renewal into consideration. In this paper. the material properties of cylinder liner of grey discussed on the basis of the results of experimental work of the thermo plastic deformation the worn out cylinder liner made of grey cast iron.

피스톤 링과 실린더 라이너에서의 마찰저감 기술개발 (Development of Friction Reduction Method between Piston Ring and Cylinder Liner)

  • 김완호;차금환;김대은;임윤철
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.37-43
    • /
    • 1998
  • The friction loss between piston rings and cylinder liner is due to the tension of the piston rings. Lubricant is usually supplied to reduce the friction. However, the sliding speed of the piston varies during the reciprocating cycle and is very low near TDC(Top Dead Center)/BDC(Bottom Dead Center), where the hydrodynamic lubrication cannot be sustained. Since the lubrication regime is shifted from the hydrodynamic to the boundary lubrication near TDC/BDC, wear particles are easily generated so that the friction loss becomes bigger and bigger due to the plowing effect of wear particles. In this study, for the purpose of reducing the friction loss, an undulated surface is adopted to the cylinder liner to trap wear particles. The friction force variations, which are measured by strain gaged, show that the concept of undulated surface is one of the promising methods to effectively reduce the friction between piston rings and cylinder liner.

디젤엔진 실린더 라이너-피스톤 링 소재의 연삭 마멸 특성 (Abrasive Wear Characteristics of Materials for Diesel Engine Cylinder Liner and Piston Ring)

  • 장정환;김정훈;김창희;문영훈
    • 열처리공학회지
    • /
    • 제20권2호
    • /
    • pp.72-77
    • /
    • 2007
  • Abrasive wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. Wear by abrasion are forms of wear caused by contact between a particle and solid material. Abrasive wear is the loss of material by the passage of hard particles over a surface. From the pin-on-disk test, particle dent test and scuffing test, abrasive wear characteristics of diesel engine cylinder liner-piston ring have been investigated. Pin-on-disk test results indicate that abrasive wear resistance is not simply related to the hardness of materials, but is influenced also by the microstructure, temperature, lubricity and micro- fracture properties. In particle dent test, dent resistance stress decreases with increasing temperature. From the scuffing test by using pin-on-disk tester, scuffing mechanisms for the soft coating and hard coating were proposed and experimentally confirmed.

피스톤 런닝부의 소재에 따른 마모특성 연구 (A Study on Wear Characteristics of Piston Running Part)

  • 장정환;이혜경;주병돈;이재호;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.375-378
    • /
    • 2007
  • Abrasive wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. Wear by abrasion are forms of wear caused by contact between a particle and solid material. Abrasive wear is the loss of material by the passage of hard particles over a surface. From the pin-on-disk test, particle dent test and scuffing test, abrasive wear characteristics of diesel engine cylinder liner-piston ring have been investigated. Pin-on-disk test results indicate that abrasive wear resistance is not simply related to the hardness of materials, but is influenced also by the microstructure, temperature, lubricity and micro- fracture properties. In particle dent test, dent resistance stress decreases with increasing temperature. From the scuffing test by using pin-on-disk tester, scuffing mechanisms for the soft coating and hard coating were proposed and experimentally confirmed.

  • PDF

선박엔진의 실린더 라이너의 손상 진단을 위한 진동 분석법 (Vibration Analysis for Failure Diagnosis of Cylinder Liner of Large Ship Engine)

  • 구현호;조연상;박준홍;박흥식
    • Tribology and Lubricants
    • /
    • 제30권1호
    • /
    • pp.21-28
    • /
    • 2014
  • Damage to the cylinder liner of large ship engines, such as scuffing on the surface, can occur very easily because it is operated in a corrosive environment. This scuffing may be due to oil film destruction and corrosive wear caused by water and sulfur included in the fuel, abrasive impurities, and poor lubricants. Thus, a method for monitoring the condition and diagnosing the failure of the cylinder liner and piston ring is needed. In this study, a reciprocating friction and wear test was carried out with a cast iron specimen, which simulated an engine cylinder in a corrosive atmosphere. The lubricants used were base oil, stirred oil with distilled water, a NaCl solution, and dilute sulfuric acid. The friction coefficient and frequency spectrum were measured using a load cell and acceleration sense in each experimental condition. We then used these results to diagnose the failure of the cylinder liner.

플라즈마용사 세라믹코팅의 실린더라이너 적용위한 마찰 마모특성 연구 (Tribological Behaviour of Plasma Sprayed Ceramic Coatings for the Application to the Cylinder Linerin Engines)

  • 안효석;김장엽;임대순
    • 한국자동차공학회논문집
    • /
    • 제1권2호
    • /
    • pp.89-102
    • /
    • 1993
  • In this experimental investigation, various plasma-sprayed zirconia contained coatings and a kind of alumina-zirconia coating were studied to gain a better understanding of their tribological behaviour under dry contact condition in a reciprocating motion at temperature of 200℃. Particular attention was made for finding appropriate coatings in cylinder liner/piston ring application with an emphasis on the antiwear property. In order to identify the wear mechanism, SEM(Scanning Electron Microscope), optical micrograph, and roughness tester were used. Alumina-zirconia and 8% yttria-zirconia were found to be most appropriate for the application to the cylinder liner/piston ring and, especially, alumina-zirconia exhibited highest wear-resistance and also showed good friction characteristics. Wear mechanisms of ceramic coatings identified.

  • PDF