• 제목/요약/키워드: Cylinder contact

검색결과 171건 처리시간 0.028초

디젤엔진용 핀부시 베어링 소재의 마찰특성에 관한 실험적 연구 (Experimental Study on the Friction Characteristics of Pin-Bush Bearing Metals for Diesel Engine)

  • 김청균;김경섭
    • Tribology and Lubricants
    • /
    • 제25권6호
    • /
    • pp.409-413
    • /
    • 2009
  • This paper presents the hardness and friction characteristics of pb-free pin-bush bearing metal, which is manufactured by a centrifugal casting technology. A bronze metal with a high hardness and low friction properties is usually used for Diesel engine pin-bush bearing and high pressure cylinder. Pb-free metal for pin-bush bearings shows a little high hardness of 120 Hv compared with that of a conventional Pb bearing metal of 100~110 Hv. In general, the friction coefficient of pin-bush bearings is affected by a rotating speed and a load for various rubbing contact modes. But a contact load is more influential parameter when the contact rubbing mode transits from a mixed lubrication to a dry friction contact. The experimental result shows that the friction coefficient is more unstable at the dry contact mode compared with that of other two rubbing modes such as oil film contact and mixed friction conditions.

액체수소용 초저온 고압 피스톤 펌프의 기밀성 향상에 관한 기초연구 (A Study on Air-tightness of High Pressure Liquid Hydrogen Pumping System at the Low Temperature)

  • 이종구;이종민;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제24권4호
    • /
    • pp.302-310
    • /
    • 2013
  • As an initial step to develop a liquid hydrogen pump of piston type operated under cryogenic and high pressure, leakage and piston head shape for the piston pump were discussed with temperature and pressure. As the results, the leakage depended on correlation among density, viscosity, clearance area by the low temperature. In order to reduce the leakage, it was found that the air-tightness can be improved by minimizing contact surface between piston and cylinder, and also increasing pressure in-cylinder can reduce piston clearance. Among the proposed piston shapes, D type piston shape had the most air-tightness. D type piston had smaller contact surface than other piston shape and easier expansion of cup shape by pressure. The leakage of D type piston shape was found about 7%, compared with A type piston shape. But it was required that analyze about vapor lock by friction and wear resistance.

800kV 차단부의 무부하 압력상승 측정 (Measurement of Pressure-Rise at No-Load in 800kV Model Interrupter)

  • 장기찬;송기동;정진교;송원표;김정배;박경엽;신영준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.475-478
    • /
    • 1995
  • The variations of cold gas properties such as density, pressure, temperature and velocity which are dependent each other are closely related with the dielectric recovery of an interrupter. So, the pressure-rises at no-load in the puffer cylinder and in front of fixed arcing contact of 800kV model interrupter were measured experimentally using pressure transducers of strain gage type and semiconducting type, respectively. The maximum value of pressure-rise in the puffer cylinder increased almost linearly from 7.6 bar at the minimum operated pressure to 9.7 bar at the maximum operated pressure, while the pressure-rise in front of fixed arcing contact was independent with the operated pressure. The measured values will be utilized in verifying the self-developed cold flow analysis program and as an input of commercialized CFD program package.

  • PDF

Calculation of Mixed Lubrication at Piston Ring and Cylinder Liner Interface

  • Cho, Myung-Rae;Park, Jae-Kwon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.859-865
    • /
    • 2001
  • This paper reports on the theoretical analysis of mixed lubrication for the piston ring. The analytical model is presented by using the average flow and asperity contact model. The cyclic variations of the nominal minimum oil film thickness are obtained by numerical iterative method. The total friction is calculated by using the hydrodynamic and asperity contact theory. The effect of the roughness height, pattern, and engine speed on the nominal minimum film thickness, friction force, ad frictional power losses are investigated. As the roughness height increases, the nominal oil film thickness and total friction force increase. Also, the effect of the surface roughness on the boundary friction is dominant at low engine speed and high asperity height. The longitudinal roughness pattern shows lower mean oil film pressure and thinner oil film thickness compared to the case of the isotropic and transverse roughness patterns.

  • PDF

고속 공기압 실린더의 피스톤 실 특성 해석 (Analysis of Piston Seal in High-Speed Pneumatic Cylinders)

  • 장중걸;김도태;한신식
    • 유공압시스템학회:학술대회논문집
    • /
    • 유공압시스템학회 2010년도 춘계학술대회
    • /
    • pp.99-104
    • /
    • 2010
  • Nonlinear seal friction in pneumatic cylinders can impede the performance of pneumatic systems designed for high precision positioning with favorable high speed actuation. The behaviour of an elastomeric piston seal in high speed pneumatic cylinders is analysed by nonlinear finite element analysis using ABAQUS. The contact pressures, stress and strain distributions and frictional forces of the piston seal are simulated with variation of interference fits, supply pressures, friction coefficients and piston rod velocities. The nonlinear finite element model of the piston seal is used to predict deformation of a seal, friction force and contact pressure distributions.

  • PDF

선접촉시 세라믹의 마찰 및 마멸 특성에 미치는 속도와 하중의 영향 (The Effects of Sliding Speed and Load on Tribological Behavior of Ceramics in Line-contact Sliding)

  • 김영호;이영제
    • Tribology and Lubricants
    • /
    • 제11권4호
    • /
    • pp.35-44
    • /
    • 1995
  • Within the practical ranges of speed and load, the formation of transfer films and the consequent effects on the friction and wear behavior of ceramic materials during repeated pass sliding contact were studied. These tests were done using $Al_{2}O_{3}$, SiC and $Si_{3}N_{4}$ with the cylinder-on-flat test configuration. The three pairings behaved differently, even if some wear mechanisms were common to the three systems. The $Al_{2}O_{3}$ pair showed the least wear in overall conditions, followed by the $Si_{3}N_{4}$ pair in harder sliding conditions. The wear of SiC was very high at severe loading. In case of $AL_{2}O_{3}$ and $Si_{3}N_{4}$, the transfer film, whenever formed, is strongly attached, enough to resist being wiped off by the slider. As a consequence, the formation of this f'fim leads to a decrease in the wear rate because of the protecting role of the film. The presence of the film at the contact interface also results in high friction. Also, the wear rate of each ceramics is related to the frictional power provided by load, speed and friction.

유한요소해석을 이용한 유압브레이커용 우레탄 패킹의 성능분석 (Performance Analysis of Urethane Packing in the Hydraulic Breaker by a Finite Element Method)

  • 신현우;홍종우;최이광
    • 한국정밀공학회지
    • /
    • 제33권2호
    • /
    • pp.139-147
    • /
    • 2016
  • Performances of urethane packing in the hydraulic breaker were analyzed using a finite element method. Because of high temperature and high pressure in the hydraulic breaker, it is better to use urethane rather than rubber as a packing material. We obtained the physical properties of urethane at elevated temperature by the tensile test. We analyzed buffer seal and U-packing maintaining the pressure and preventing oil leakage. Deformation, stress distribution, contact length, contact pressure of packing at each pressure step were obtained using finite element analysis. As the temperature increases, stress and contact force tend to decrease at low pressure. As the gap between piston and cylinder increases, contact length and contact forces decrease. Consequently, it is possible to design the packing section using these analyses, and construct a system to predict the possibility of oil leakage in the hydraulic breaker.

경사진 실린더에 작용하는 플런징 쇄파 충격력의 불안정성 고찰 (Instability of Plunging Breaking Wave Impact on Inclined Cylinder)

  • 홍기용;신승호
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제10권4호
    • /
    • pp.187-192
    • /
    • 2007
  • 플런징 쇄파에 의해 실린더에 작용하는 충격력을 실험적으로 고찰하였다. 쇄파는 조파기의 구동주파수를 선형적으로 감소시켜 수조의 목표지점에 파랑을 집중시킴으로써 생성되며, 쇄파의 파형은 등파기울기 스펙트럼을 채택하였다. 실린더와 쇄파 전면의 접촉각이 충격력에 미치는 영향을 고찰하기 위해 3개의 경사각을 적용하였으며, 압력 분포 및 정점 값에 대한 실린더 직경의 영향을 살피기 위해 3개의 서로 다른 직경을 갖는 실린더가 사용되었다. 충격 압력의 최대 값을 찾기 위해 실린더를 수조 길이방향으로 조금씩 이동하며 총 8개 지점에서 실험을 수행하였다. 실린더 표면의 압력과 합력은 piezo-electric형 압력계와 3축 로드셀을 사용하여 30 kHz의 빈도로 계측하였다. 실린더 직경, 경사각 및 회전각에 따른 정점 충격압력과 충격력의 변화를 분석하였으며, 실린더 표면의 압력분포를 고찰하였다. 실린더의 수조 내 위치 및 실린더 표면의 위치는 정점압력의 크기와 시계열 형상을 지배하는 주요 인자이며, 반면에 실린더 직경과 경사각의 영향은 상대적으로 미미하다. 충격현상은 매우 불안정하기 때문에 동일조건의 반복 실험에서도 계측 값의 넓은 분포가 발생한다.

  • PDF