• Title/Summary/Keyword: Cylinder Head

Search Result 259, Processing Time 0.023 seconds

Tumble flow motion and flame propagation in a SI engine (SI 엔진의 텀불 유동과 화염전파)

  • Jie, Myoung-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.155-163
    • /
    • 1999
  • In this study, single cylinder engines with different tumble ratio were made to find out in-cylinder fluid motion and flame propagation. Tumble ratio derived from the steady state flow rig test. Flame propagation speed was obtained using cylinder head gasket ionization probe and the piston ionization probe. And the combustion pressure in cylinder was measured to analyze the combustion characteristics. In case of high tumble engine, BSFC and BSHC were decreased and BSNOx was increased at part load test. Also BMEP and combustion peak pressure was increased at full load test. Tumble flow motion had an great effects on initial burning period rather than main burning period in part load test.

  • PDF

Finite Element Analysis of Thermal Fatigue Safety for a Heavy-Duty Diesel Engine (대형디젤엔진의 열적 피로안전도 분석을 위한 유한요소해석)

  • 조남효;이상업;이상규;이상헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.122-129
    • /
    • 2004
  • Finite element analysis was performed to analyze structural safety of a new heavy-duty direct injection diesel engine. A half section of the in-line 6-cylinder engine was selected as a computational domain. A mapping method was used to project heat transfer coefficients from CFD results of engine coolant flow onto the FE model. The accurate setting of thermal boundary condition on the FE model was expected to result in improved prediction of temperature, cylinder bore distortion, and stresses. Characteristics of high cycle fatigue were investigated by assuming the engine was operated under the following five loading conditions repeatedly; assembly force, assembly force with thermal loading, alternating maximum gas pressure loading at each cylinder combined with assembly force and thermal loading. Distribution of fatigue safety factor was calculated by using it Haigh diagram in which the maximum and the minimum stresses were selected from the five loading cases.

Impact of geometrical parameters on SGEMP responses in cylinder model

  • Chen, Jian-Nan;Zhang, Jun-Jie
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3415-3421
    • /
    • 2022
  • This paper is aimed to find out the impact of the geometrical parameters, mainly the radius and the height of a cylinder, on the SGEMP response including the famous scaling law in the classical cylinder model using a homemade PIC code UNIPIC-3D. We computed the electric fields at the center and at the edge on the emission head face with different radii and heights under normal X-rays incidence. The results show that the electric field will increase with the radius but decrease with the height. We analyze the scaling law that links the electric field product and fluence product, and whereafter an irreconcilable contradiction raises when the radius is changeable, which limits the application range of the scaling law. Moreover, the field-height-radius relation is found and described by a combination of logarithmic and minus one-quarter numerical fitting law firstly. Particle and magnetic field distributions are used to explain all the behaviors of the fields reasonably. All the findings will assist the evaluation of SGEMP response in spacecraft protection.

Analysis of Temprature and Thermal Stress Distribution of a DI Diesel Engine Cylinder Head(PART I) (직접분사식 디젤엔진 실린더헤드의 온도 및 열응력 분포해석(PART I))

  • 이진호;이교승;장경준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.187-196
    • /
    • 1996
  • In this study, 3-dimensional finite element model of a diesel engine cylinder head was made to accomplish heat transfer analysis and also thermal stress and deformation analysis. Heat release analysis and Nusselt-Reynolds correlations were applied to determine the convective boundary conditions which are required for heat transfer analysis to calculate temperature distribution. Thermal stress distribution was also investigated from heat transfer analysis results. Steady state temperature and heat flux were measured by using K-type thermocouples and then compared with numerical results to give a guarantee for the propriety of numerical analyses.

  • PDF

A Study on the Steady Intake Flow Characteristics of the Intake 3-Valve Cylinder Head (흡기3밸브 실린더 헤드의 흡입 정상유동 특성에 관한 연구)

  • Chung, Jae-Woo;Lee, Ki-Hyung;Kim, Woo-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.880-885
    • /
    • 2000
  • Flow patterns and steady flow characteristics of an intake 3valve cylinder head are not obviously declared. Thus, in the study, the characteristics and limitation of intake flow coefficient which applied to multi intake valve engine are introduced. The flow coefficient and tumble characteristics are investigated by means of the steady flow test and flow visualization method. As the results, it is found that the intake flow rate is dominated by effective valve open area. In addition, this paper shows that the mass flow rate of intake 3valve engine is greater than that of intake 2valve engine and tumble flow of intake 3valve engine is superior to that of intake 2valve engine.

Thermal Deformation Analysis of Exhaust Manifold for Turbo Diesel Engine in Consideration of Flange Design (터보 디젤 엔진용 배기매니폴드의 열변형 해석)

  • Kim, Beom-Keun;Lee, Eun-Hyun;Choi, Bok-Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.338-343
    • /
    • 2007
  • Thermal deformation of cast iron exhaust manifold for turbo diesel engine is investigated by finite element analysis (FEA). The FE model included the temperature dependent material properties as well as the interactions between exhaust manifold, cylinder head and fasteners. It also considers the sliding behavior of the flanges of exhaust manifold on cylinder head when either expansion or contraction of the exhaust manifold exceeds the fastener pretension. The result of analysis revealed that remarkable thermal deformation along the longitudinal direction. Compressive plastic deformation at high temperature remained tensile stress in manifold and resulted in longitudinal contraction at ambient temperature. The amount of contraction at each fastener position was predicted and compared with experimental results. Analysis results revealed that the model predicted deformation qualitatively, but more elaborated cyclic hardening behavior would be necessary to predict the deformation quantitatively.

Development of Ultrasonic Sensor for Engine Condition Diagnosis of EDG (비상디젤발전기 엔진 상태진단 초음파 탐촉자 개발)

  • Lee, Sang-Guk;Choi, Kwang-Hee
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.31-35
    • /
    • 2013
  • The emergency AC power supply system of the nuclear power plant is designed to supply the power to the nuclear power plant at the emergency operating condition. The safety function of the diesel generator at the nuclear power plant is to supply AC electric power to the safety system whenever the preferred AC power supply is unavailable. The reliable operation of onsite standby diesel generator should be ensured by a condition monitoring system designed to maintain, monitor and forecast the reliability level of diesel generator. The purpose of this paper is to improve the existing ultrasonic sensor used for condition diagnosis of engine fuel pump and cylinder head for the accurate diagnosis in actual engine condition of emergency diesel generator(EDG). As a result of this study, we could design and develop much more reliable ultrasonic sensor than existing ones.

An Experimental Study on the Measurement of Flow Field in a Direct Diesel Engine Using a Single Cylinder Visualization Engine (가시화 엔진을 이용한 직분식 디젤엔진내의 유동장 측정에 관한 연구)

  • Han, Yong-Taek;Hwang, Kyu-Min;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.129-137
    • /
    • 2006
  • This paper studies the effects of the swirl for the variation of intake port configuration that is key parameters in the flow field of direct injection diesel engines. In-cylinder flow characteristics is known to have significant effects on air-fuel mixing, combustion, and emissions. To investigate the effects of the swirl flow, various rpm(250, 500, 750) and two different intake port were used. And to evaluate the swirl motion in the flow field visualization engine, steady state flow test was conducted. Helical port intake port and SCV(Swirl Control Valve) were selected as the design parameters to increase the swirl flow and parametric study was performed. In the case of non-SCV, intake flow rate and non-dimensional swirl ratio were higher than those of SCV for the swirl head type. So, we could strengthen the swirl in the flow field with the swirl head type and don't using SCV. From the results of steady state flow test, non-swirl head type has the most good advantage for intake flow rate, and also the flow rate could be increased by using the SCV slightly. The effects of the type of engine head on intake air flow capability are dominant with respect to the existence of the SCV. We could measure the qualitative grade of swirl by capturing the scattering signal of microballoon from ICCD camera in the visualization diesel engine.

Feed Rate Control for the Head-Feed Thresher (자동탈곡기(自動脱穀機)의 공급율(供給率) 제어(制御)(I) -공급율(供給率)에 따른 부하(負荷) 특성(特性)-)

  • Chung, C.J.;Ryu, K.H.;Choi, Y.S.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.3
    • /
    • pp.20-31
    • /
    • 1988
  • This study was undertaken to investigate the load characteristics of the head-feed thresher, which may be affected by various factors such as physical properties of grain, thresher design parameters and its operational condition. The study was conducted at an initial step toward developing an automatic feed-rate control system of the head-feed thresher. A microcomputer-based data acquisition system for the load-speed characteristic of the thresher-shaft and the rail-deflection of the feeding device in accordance with a varied feeding thickness was developed. The sensors being developed and used for sensing the torque and speed of the cylinder and the power-input-shaft and the feeding thickness showed a high accuracy. A microcomputer-based data acquisition system developed in this study was assessed as adequate for a rapid acquisition and analysis of data. The effect of the feed-rate on the torque and speed of the thresher shaft, when fed intermittently by bundles, affected not by the rice varieties but by the dryness of threshing material tested. When fed by the continuous constant thickness, the torque and speed of the cylinder due to the increase of the feed-rate or feeding thickness were given by the relation by the second order parabola.

  • PDF