• Title/Summary/Keyword: Cylinder Head

Search Result 259, Processing Time 0.022 seconds

Dynamic Deformation Analysis of Cylinder Bore considering Forced Vibration (강제 진동을 고려한 실린더 보어의 동적 변형 해석)

  • 윤성호;조덕형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.174-181
    • /
    • 2002
  • Dynamic deformation of the cylinder bore during actual engine operation has an important effect on the combustion gas sealing, oil consumption, friction and so on. The dynamic analysis using the finite element method is performed to investigate the dynamic deformation of the cylinder bore subjected to forced vibration under excitation of the combustion gas pressure. However, this analysis requires large computer memory and tremendous solving time. The pseudo-static analysis can be an alternative to the dynamic analysis at the expense of accuracy. Dynamic analysis and static analysis results are presented for both closed-deck block and open-deck block that are respectively combined with the cylinder block, cylinder head, transmission, and oil pan.

An experimental study on the swirl flow characteristics of a helical intake port (나선형 흡기포트의 선회유동 특성에 관한 실험적 연구)

  • Lee, Ji-Geun;Yu, Gyeong-Won;No, Byeong-Jun;Gang, Sin-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.793-803
    • /
    • 1997
  • This experimental study was mainly investigated on the swirl flow characteristics in the cylinder generated by a helical intake port. LDA system was used for the measurement of in-cylinder velocity fields. Tangential and axial velocity profiles, with varying valve lifts, valve eccentricity ratios and axial distance, were measured. When the intake valve was set in the cylinder center, we could find that in-cylinder swirl flow fields were composed of a forced vortex motion and a free vortex motion in the vicinity of the cylinder center and the cylinder wall respectively. In case of valve eccentricity ratio, N$_{y}$ = 0.45, the vortex flow which rotates to the opposite direction of a main rotating flow in the cylinder was found. And the reverse flow toward the cylinder head surface was also found in axial velocity profile and it showed the tendency of the linear decrease in the region of 0.leq.Y/B.leq.1.2.2.

Study for the Actuation of Lifter by the Bi-Directional Pump and Single-Rod Cylinder (양방향펌프와 편로드실린더에 의한 리프터의 구동에 관한 연구)

  • Lee, Seong-Rae;Kim, Je-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.139-145
    • /
    • 2007
  • The motion of single-rod cylinder is typically controlled by the directional control valve. In some case, the hydraulic system should be energized by the man power and at the same time the motion of a cylinder is controlled manually. It may be confusing for a man to do two things at the same time. The solution is to make up the closed hydraulic circuit with the bi-directional pump and single-rod cylinder without using a directional control valve. In the case of single-rod cylinder, the flows at the rod side and head side are so different that several valves should be installed to make the motion of single-rod cylinder possible. The hydraulic system is composed of a bi-directional pump, a single-rod cylinder, pilot operated check valves, a check valve and a counter balance valve for the purpose of actuating the lifter. The characteristics of a suggested system are analysized mathematically and numerically.

Study of Hot Spinning Process for Head of CNG Storage Vessel (CNG 저장용기의 두부 성형을 위한 열간스피닝 공정에 관한 연구)

  • Lee, Hyun Woo;Jung, Sung Yuen;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.547-554
    • /
    • 2013
  • The fuel storage vessel installed in CNG vehicles can be largely divided into 3 parts: head, cylinder, and dome. Studies of the cylinder and dome parts have already been performed, but sufficient design data is not available about the head part. Therefore, expert field engineers heavily depend upon trial-and-error methods. Therefore, FE analysis is performed to review the hot spinning process for forming the head part of the CNG vessel using the Arbitrary Lagrangian-Eulerian (ALE) method. The effects of forming factors on the load were analyzed. The values of the factors were chosen to avoid defects in the head part and buckling, and the forming feasibility of the head part was investigated. Furthermore, a bursting test was performed to evaluate the safety of the storage vessel.

An Experimental Study on Improved Fuel Economy and Lower Exhaust Emissions of New Automotive Engine adopting Split Cooling System

  • Oh, C.S.;Lee, J.H.;Shin, S.Y.;Kim, W.T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.407-408
    • /
    • 2002
  • This paper presents a split cooling system for a new inline 4-cylinder automotive engine. The split cooling system circulates coolant to the cylinder head and cylinder block separately. The coolant flow in the cylinder block is controlled by a $2^{nd}$ Thermostat installed at the outlet of cylinder block. The $2^{nd}$ thermostat closes when the coolant temperature is low. And this makes the coolant flow in cylinder block nearly stagnant, thereby reducing the coolant-side heat transfer coefficient and raising cylinder bore temperature. The $2^{nd}$ thermostat starts to open when the coolant temperature reaches a specified temperature. The test results on engine dynamometer show improved fuel economy and lower exhaust emission which result from the decrease in friction works and cooling loss. Also, several vehicle tests, with application of the new engine have been performed. Fuel economy improvement of 0.5{\sim}2.0%$ yields from different test modes and details are discussed in this paper.

  • PDF

On the Viscous Flow Around Breaking Waves Generated by a Submerged Cylinder(Part 2 : Aspects of Viscous Flow) (몰수실린더에 의하여 생성되는 쇄파주의 점성유동의 고찰(제2부: 점성유동특성))

  • B.S. Hyun;Y.H. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.91-98
    • /
    • 2000
  • The present paper is Part 2 of three-part paper for an experimental study on breaking waves generated by a submerged cylinder. Measurements of velocity and head loss profiles at the wakes of cylinder and breaker as well as the turbulent intensities in breaking region were made to elucidate the viscous aspects of breaking waves. Their mutual correlation is also investigated. It is found that the head loss profile is an excellent indicator of the strength and extent of breaker. Very high turbulent intensities measured at and just downstream of the breaker indicate the consequence of energy transfer of wave breaking into turbulence.

  • PDF

Computational Approach to Improve Coolant Flow Characteristics for the SI Engine (수치해석적 접근을 통한 불꽃점화 엔진의 냉각수 유동특성 개선)

  • Lee, Sang-In;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3553-3558
    • /
    • 2009
  • This study has been conducted to improve coolant flow pattern in the gasoline engine. Flow field has been calculated for the coolant passage mainly around the exhaust ports and valves. For the original model, a flow stagnant region has existed between exhaust valves of the second cylinder. To improve coolant flow characteristics, coolant passage area has been re-modeled and optimized. Furthermore, for the improved coolant core model, coolant passage under the exhaust manifold has been added to reduce exhaust-gas temperature. It was found that the flow through a gasket plays a critical role for the flow in the cylinder head and around exhaust valves. Finally, coolant flow around exhaust valves and in the cylinder head has been improved in terms of flow rate distribution.

A Study on Effect of Recirculated Exhaust Gas upon Wears of Piston and Piston Rings in Diesel Engines with Scrubber EGR System (스크러버형 EGR시스템 디젤기관의 피스톤 및 피스톤링 마모에 미치는 재순환 배기의 영향에 관한 연구)

  • 배명환;하정호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.79-86
    • /
    • 2000
  • The effects of recirculated exhaust gas on the wears of piston and piston rings were investigated by the experiment with a two-cylinder, four cycle, indirect injection diesel engine operating at an engine load of 75% and an engine speed of 1600 rpm. For the purpose of comparison between the wear rates of two cylinders with and without EGR, the recirculated exhaust gas was sucked into one of two cylinders after the soot contenets in exhaust emissions were removed by an intentionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diameter), while only the fresh air was inhaled into the other cylinder. These experiments were carried out on the fuel injection timing fixed at 15.3$^{\circ}$ BTDC. It was found that the wear rate of piston skirt with EGR increased a little bit, but the piston head diameter increased, rather than decreased, owing to soot adhesion and erosion wear, and especially larger with EGR, and that the wear rates of the top and second piston ring(compression ring)thickness with EGR were more than twice the wear rate of top ring in case of no EGR, but the wear rate of oil rings thickness without EGR increased greater than that with EGR.

  • PDF

A Study on the Combustion Performance by the Improvement of In Cylinder Flow Motion in the Natural Gas Engine (실린더내 흡기유동개선이 천연가스엔진의 연소성능에 미치는 영향 연구)

  • Jeong, D.S.;Suh, S.W.;Oh, S.M.;Uhm, J.H.;Chang, Y.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.90-96
    • /
    • 1995
  • In general, natural gas engine converted from gasoline engine has disadvantage of power decrease. In order to increase power output in natural gas engine, the improvement of in-cylinder flow motion has been believed as the most effective method. In this study, the geometry of combustion chamber in 4 valve DOHC natural gas engine is modified, and in-cylinder flow patterns is analyized. Also engine performance is evaluated according to the modification of in-cylinder flow motion.

  • PDF

A study on the effect improving in-cylinder flow on fast and lean burn in a gasoline engine (가솔린엔진의 연소실내 유동개선에 의한 급속희박 연소효과에 관한 연구)

  • 강건용;엄종호;정동수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.80-89
    • /
    • 1992
  • An experimental study of in-cylinder of flow and combustion characteristics in two gasoline engines of different intake ports which are denoted as original port and masked shroud head (MSH) ports is presented. The flows generated by the MSH and the original port are invest- igated by laser Doppler velocimeter(LDV) under steady flow and motoring (non-firing) condit -ions. Combustion characteristics with different swirl levels produced by two intake ports are analyzed by combustion pressure measurement and statistical calculation. The swirl inside the cylinder of the MSH port engine is found to be much higher than the original port, and the MSH has a large eddy motion of cylinder diameter size. Using ensemble average method to valuate engine turbulence under motoring condition, the MSH port engine is shown to have h -igher turbulence intensity than the original port, so that the effect of the MSH port on fast burn is shown. Also the cyclic variations of peak pressure and the reaching time in the MSH port are apparently reduced.

  • PDF