• 제목/요약/키워드: Cyclopolymerization

검색결과 14건 처리시간 0.017초

Cyclopolymerization of 1,1-Dipropargyl-1-silacyclohexane by Transition Metal Catalysts

  • Gal, Yeong-Soon;Lee, In-Sook;Chang, Eun-Hee;Jeong, Yun-Cheol;Kwak, Young-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권8호
    • /
    • pp.1305-1310
    • /
    • 2007
  • A conjugated spirocyclic polymer was synthesized via the cyclopolymerization of 1,1-dipropargyl-1- silacyclohexane with various transition metal catalysts. The monomer, 1,1-dipropargyl-1-silacyclohexane was synthesized by Grignard reaction of 1,1-dichloro-1-silacyclohexane with propargyl magnesium bromide. This polymerization proceeded well to give the corresponding poly(1,1-dipropargyl-1-silacyclohexane). The catalytic activity of WCl6 was found to be similar with that of MoCl5. The structure of polymer having the conjugated backbone with silacyclohexane moieties was characterized by such instrumental methods as NMR (1H-, 13C-), IR, and UV-visible spectroscopies. The resulting polymers were mostly yellow or light-brown powders, depending on the catalyst systems used. This polymer was completely soluble in halogenated and aromatic hydrocarbons such as chloroform, 1,2-dichloromethane, benzene, toluene, and chlorobenzene, etc. The thermal and oxidative stabilities of polymer were also studied and discussed.

Synthesis and Properties of Poly(2-ethynyl-N-propargylpyridinium bromide)

  • 갈용순;이원철;귀태롱;이상섭;배장순;김봉식;장상희;진성호
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권2호
    • /
    • pp.183-188
    • /
    • 2001
  • Ionic conjugated polymer, poly(2-ethynyl-N-propargylpyridinium bromide), was prepared by the cyclopolymerization of 2-ethynyl-N-propargylpyridinium bromide on using various transition metal catalysts, or by thermal methods without adding catalyst. The polymerization of 2-ethynyl-N-propargylpyridinium bromide catalyzed by PdCl2 gave the resulting polymers in relatively high yields. The polymer structure was characterized by various instrumental methods to confirm the conjugated polymer backbone structure carrying cumulated pyridine moiety. The polymers prepared by PdCl2 in DMSO or m-cresol were completely soluble in DMF, DMSO, and formic acid. The inherent viscosities of the resulting polymers were in the range of 0.07-0.19 dL/g. Thermal properties of the polymers were also discussed.

Cyclopolymerization of 1,6-Heptadiyne by Molybdenum and Tungsten-Based Catalysts

  • Gal, Yeong-Soon;Lee, Won-Chul;Gui, Tae-Long;Jin, Sung-Ho;Kwangnak Koh;Kim, Sung-Hoon;Kim, Dong-Won;Ko, Jang-Myoun;Chun, Jong-Han
    • Macromolecular Research
    • /
    • 제9권4호
    • /
    • pp.220-227
    • /
    • 2001
  • The polymerization of 1,6-heptadiyne was carried out by molybdenum and tungsten-based transition metal catalysts. This polymerization by MoCl$\_$5/ alone proceeded well to give a quantitative yield of polymer. The effect of monomer to catalyst mole ratio (M/C), initial monomer concentration ([M]$\_$0/), and the polymerization temperature for the cyclopolymerization of 1,6-heptadiyne was studied and discussed. The polymerization solution exhibited red color even after 30 min of polymerization time. The resulting polymers were mostly brown powders and mostly insoluble in any organic solvents although the polymerization proceeded in homogeneous manner in some cases. The polymer structure was characterized by various instrumental methods to have the conjugated polymer backbone structure carrying cyclic recurring unit. The thermal and morphological properties of the resulting poly(1,6-heptadiyne) were also discussed.

  • PDF

Synthesis and Properties of Conjugated Cyclopolymers Bearing Fluorene Derivatives

  • Gal Yeong-Soon;Jin Sung-Ho;Lee Hyo-San;Kim Sang Youl
    • Macromolecular Research
    • /
    • 제13권6호
    • /
    • pp.491-498
    • /
    • 2005
  • Fluorene-containing, spiro-type, conjugated polymers were synthesized via the cyclopolymerization of dipropargylfluorenes (2-substituted, X=H, Br, Ac, $ NO_{2}$) with various transition metal catalysts. The polymerization of dipropargylfluorenes proceeded well using Mo-based catalysts to give a high polymer yield. The catalytic activities of the Mo-based catalysts were found to be more effective than those of W-based catalysts. The palladium (II) chloride also increased the polymer yield of the polymerization. The polymer structure of poly(dipropargylfluorene)s was characterized by such instrumental methods as NMR ($^{1}H_{-}$, $^{13}C_{-}$), IR, UV-visible spectroscopies, and elemental analysis as having the conjugated polymer backbone bearing fluorene moieties. The $^{13}C_{-}$NMR spectral data on the quaternary carbon atoms in polymers indicated that the conjugated cyclopolymers have the six-membered rings majorly. The poly(dipropargylfluorene) derivatives were completely soluble in halogenated and aromatic hydrocarbons such as methylene chloride, chloroform, benzene, toluene, and chlorobenzene. The poly(dipropargylfluorene) derivatives were thermally more stable than poly(dipropargylfluorene) itself, and X-ray diffraction analyses revealed that the polymers are mostly amorphous. The photoluminescence peaks of the polymers were observed at about 457-491 nm, depending on the substituents of fluorene moieties.

Allylamine계 항균제의 합성 및 그 항균성에 관한 연구(II) (A Study on the Antimicrobial Activity of Allylamine Polymers(II))

  • 심재윤;조예경;윤남식;박태수
    • 한국염색가공학회지
    • /
    • 제11권6호
    • /
    • pp.36-42
    • /
    • 1999
  • The antimicrobial activities of the copolymer of N,N'-dimethyl- N,N'-diallyl ammonium chloride(DMDAAC) and diallyl amino(DA) were investigated. The copolymer of DMDAAC and DA was prepared by free radical Polymerization through an intra-intermolecular propagation mechanism ie, cyclopolymerization. The copolymer was, then, reacted with cyanuric chloride for reactivity with hydroxyl group of cellulose. Cotton fabrics were finished by synthesized polymer, and their antimicrobial activities and fastness to launderings were tested. Dichlorotriazinyl DMDAAC-DA copolymer has MIC value of 1ppm against S. aureus and 10ppm against K pneumoniae. The antimicrobial fastness of the finished cotton to launderings were good enough to show colony reduction above 70% against S. aureus and K pneumoniae after 50 repeated laundering in anionic commercial detergent. Optimum treatment concentrations of the polymer were 0.5% in cold pad-batch method, and 0.1% in pad-dry method.

  • PDF