• Title/Summary/Keyword: Cyclooxygenase pathway

Search Result 195, Processing Time 0.021 seconds

Curcumin Inhibits the Activation of Immunoglobulin E-Mediated Mast Cells and Passive Systemic Anaphylaxis in Mice by Reducing Serum Eicosanoid and Histamine Levels

  • Li, Xian;Lu, Yue;Jin, Ye;Son, Jong-Keun;Lee, Seung Ho;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.27-34
    • /
    • 2014
  • Curcumin is naturally occurring polyphenolic compound found in turmeric and has many pharmacological activities. The present study was undertaken to evaluate anti-allergic inflammatory activity of curcumin, and to investigate its inhibitory mechanisms in immunoglobulin E (IgE)/Ag-induced mouse bone marrow-derived mast cells (BMMCs) and in a mouse model of IgE/Ag-mediated passive systemic anaphylaxis (PSA). Curcumin inhibited cyclooxygenase-2 (COX-2) dependent prostaglandin $D_2$ ($PGD_2$) and 5-lipoxygenase (5-LO) dependent leukotriene $C_4$ ($LTC_4$) generation dose-dependently in BMMCs. To probe the mechanism involved, we assessed the effects of curcumin on the phosphorylation of Syk and its downstream signal molecules. Curcumin inhibited intracellular $Ca^{2+}$ influx via phospholipase $C{\gamma}1$ ($PLC{\gamma}1$) activation and the phosphorylation of mitogen-activated protein kinases (MAPKs) and the nuclear factor-${\kappa}B$ (NF-${\kappa}B$) pathway. Furthermore, the oral administration of curcumin significantly attenuated IgE/Ag-induced PSA, as determined by serum $LTC_4$, $PGD_2$, and histamine levels. Taken together, this study shows that curcumin offers a basis for drug development for the treatment of allergic inflammatory diseases.

Estragole Exhibits Anti-inflammatory Activity with the Regulation of NF-κB and Nrf-2 Signaling Pathways in LPS-induced RAW 264.7 cells

  • Roy, Anupom;Park, Hee-Juhn;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • v.24 no.1
    • /
    • pp.13-20
    • /
    • 2018
  • Estragole is a naturally occurring phenylpropanoid obtained from essential oils found in a broad diversity of plants. Although the phenylpropanoids show many biological activities, clear regulation of the inflammatory signaling pathways has not yet been determined. Here, we scrutinized the anti-inflammatory effect of estragole. The anti-inflammatory effect of estragole was determined through the inhibitory mechanisms of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), nuclear factor kappa B ($NF-{\kappa}B$), and mitogen-activated protein kinases (MAPK) pathways and the activation of nuclear factor erythroid 2-related factor 2 (Nrf-2)/heme oxygenase (HO)-1 pathways in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Estragole significantly inhibited NO production, iNOS and COX-2 expression as well as LPS-induced $NF-{\kappa}B$ and MAPK activation. Furthermore, estragole suppressed LPS-induced intracellular ROS production but up-regulated the stress response gene HO-1 via the activation of transcription factor Nrf-2. These findings demonstrate that estragole inhibits the LPS-induced expression of inflammatory mediators via the down-regulation of iNOS, COX-2, $NF-{\kappa}B$, and MAPK pathways, as well as the up-regulation of the Nrf-2/HO-1 pathway, indicating that this phenylpropanoid has potential therapeutic and preventive applications in various inflammatory diseases.

Imperatorin Suppresses Degranulation and Eicosanoid Generation in Activated Bone Marrow-Derived Mast Cells

  • Jeong, Kyu-Tae;Lee, Eujin;Park, Na-Young;Kim, Sun-Gun;Park, Hyo-Hyun;Lee, Jiean;Lee, Youn Ju;Lee, Eunkyung
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.421-427
    • /
    • 2015
  • Imperatorin has been known to exert many biological functions including anti-inflammatory activity. In this study, we investigated the inhibitory effects of imperatorin on the production of inflammatory mediators in mouse bone marrow-derived mast cells (BMMC). Imperatorin inhibited degranulation and the generation of eicosanoids (leukotriene $C_4$ ($LTC_4$) and prostaglandin $D_2$ ($PGD_2$) in IgE/antigen (Ag)-stimulated BMMC. To elucidate the molecular mechanism involved in this process, we investigated the effect of imperatorin on intracellular signaling in BMMC. Biochemical analyses of the IgE/Ag-mediated signaling pathway demonstrated that imperatorin dramatically attenuated degranulation and the production of 5-lipoxygenase-dependent $LTC_4$ and cyclooxygenase-2-dependent $PGD_2$ through the inhibition of intracellular calcium influx/phospholipase $C{\gamma}1$, cytosolic phospholipase $A_2$/mitogen-activated protein kinases and/or nuclear factor-${\kappa}B$ pathways in BMMC. These results suggest that the effects of imperatorin on inhibition of degranulation and eicosanoid generation through the suppression of multiple steps of IgE/Ag-mediated signaling pathways would be beneficial for the prevention of allergic inflammation.

Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-${\kappa}B$/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells

  • Park, Chung Mu;Song, Young-Sun
    • Nutrition Research and Practice
    • /
    • v.7 no.6
    • /
    • pp.423-429
    • /
    • 2013
  • Luteolin is a flavonoid found in abundance in celery, green pepper, and dandelions. Previous studies have shown that luteolin is an anti-inflammatory and anti-oxidative agent. In this study, the anti-inflammatory capacity of luteolin and one of its glycosidic forms, luteolin-7-O-glucoside, were compared and their molecular mechanisms of action were analyzed. In lipopolysaccharide (LPS)-activated RAW 264.7 cells, luteolin more potently inhibited the production of nitric oxide (NO) and prostaglandin E2 as well as the expression of their corresponding enzymes (inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) than luteolin-7-O-glucoside. The molecular mechanisms underlying these effects were investigated to determine whether the inflammatory response was related to the transcription factors, nuclear factor (NF)-${\kappa}B$ and activator protein (AP)-1, or their upstream signaling molecules, mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase (PI3K). Luteolin attenuated the activation of both transcription factors, NF-${\kappa}B$ and AP-1, while luteolin-7-O-glucoside only impeded NF-${\kappa}B$ activation. However, both flavonoids inhibited Akt phosphorylation in a dose-dependent manner. Consequently, luteolin more potently ameliorated LPS-induced inflammation than luteolin-7-O-glucoside, which might be attributed to the differentially activated NF-${\kappa}B$/AP-1/PI3K-Akt pathway in RAW 264.7 cells.

Anti-inflammatory Effects of 8α-hydroxy pinoresinol isolated from Nardostachys jatamansi on Lipopolysaccharide-induced Inflammatory Response in RAW 264.7 Cells. (LPS로 유도된 RAW 264.7 세포의 염증반응에서 감송향(甘松香)에서 추출한 8α-hydroxy pinoresinol의 항염증 효과)

  • Choi, Sun Bok;Park, Sung-Joo
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.1-6
    • /
    • 2016
  • Objectives : Nardostachys jatamansi (NJ) is a medicinal herb that has been reported in various traditional systems of medicine for its use in antispasmodic, a digestive stimulant, skin diseases. Previous studies have already reported that NJ effectively protects against inflammation. However, the active compound in NJ is unknown. Therefore, in the present study, we analyzed effects of a compound, 8α-hydroxy pinoresinol (HP), isolated from NJ against lipopolysaccharide (LPS) induced inflammation in RAW 264.7 cells.Methods : To examine the anti-inflammatory effect of HP against LPS, intraperitoneally pre-treat the HP (100, 200, 500 and 1,000 nM) 1 h prior to LPS challenges. LPS was stimulated with 500 ng/ml in RAW 264.7 cells. To identify the anti-inflammatory effect of HP, we measured inflammatory mediators such as inducible nitric oxide synthase (iNOS) and its derivative nitric oxide (NO), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2). Also we evaluated molecular mechanisms including mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-κB) activation by western blot.Results : The HP inhibited production of inflammatory mediators, such as iNOS and its derivative NO, COX-2 and PGE2 in LPS- induced inflammationin RAW 264.7 cells. Additionally, HP also inhibited activation of p38 pathway signaling but not extracellularsignal-regulatedkinase (ERK), c-jun NH2-terminal kinase (JNK), and NF-κB.Conclusion : Our results suggest that HP has anti-inflammatory functions through the dephosphorylation of p38 and HP can provide beneficial strategy for prevention and therapy of inflammation.

The Effects of Endogenously and Exogenously Induced Nitric Oxides on the Nociperception of Rats (내.외인성으로 유도된 Nitric Oxide가 흰쥐의 통각전달에 미치는 효과)

  • 방준석;류정수;신창열;양성준;송현주;박전희;제현동;손의동;허인회
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.116-124
    • /
    • 2001
  • Nitric oxide is a labile, gaseous, broad spectrum second messenger that used in various tissues and cells. If it is induced by endogenously and exogenously in the neuronal cells, it is able to mediate analgesia or hyperalgesia at the periphery and in the spinal level respectively. This dual role of nitric oxide in the sensory system is very intriguing but has not been fully understood yet. In this experiment, acetylcholine (300 $\mu$g/paw), sodium nitroprusside (600 $\mu$g/paw), and L-arginine (300 $\mu$g/paw) represented antinociceptive effect to noxious topical stimulus, but pronociceptive responses followed by spinally application (20$\mu$g/5$\mu$l, 10$\mu$g/3$\mu$l, 500$\mu$g/5$\mu$l respectively). Calcium ion is critical element which activates nitric oxide synthase, therefore verapamil (300 $\mu$g/paw) and NOS inhibitor (20 mg/kg, L-NAME or L-NOArg) are injected into right hind paw (i.pl.). When verapamil is combined with NOS inhibitors analgesic effects through NO-cGMP pathway are inhibited as compared with ACh alone. Diluted formalin (2.5%), when injected into rats'hind paw (0.05 ml), elicited a biphasic algesic responses and nitric oxide had an analgesic effect on both $A\delta$ and C sensory nerve fibers which manipulate the phases respective1y. Nitric oxides, which produced from constitutive nitric oxide synthase, activated cyclooxygenase-type I and then prostaglandins are produced from them. So, indomethacin and ibuprofen, inhibitors of COX$_1$enzyme, when pretreated intraperitoneally (100 mg/kg) could reduce the hyperalgesic state. From these results, it is possible to imagine that the intrathecally administered NO donors expressed hyperalgesia through both long-term potentiation mechanism and arachidonic acid-prostaglandin cascade.

  • PDF

Cancer Chemoprevention by Tea Polyphenols Through Modulating Signal Transduction Pathways

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.561-571
    • /
    • 2002
  • The action mechanisms of several chemopreventive agents derived from herbal medicine and edible plants have become attractive issues in cancer research. Tea is the most widely consumed beverage worldwide. Recently, the cancer chemopreventive actions of tea have been intensively investigated. It have been demonstrated that the active principles of tea were attributed to their tea polyphenols. Recently, tremendous progress has been made in elucidating the molecular mechanisms of cancer chemoprevention by tea and tea polyphenols. The suppression of various tumor biomarkers including growth factor receptor tyrosine kinases, cytokine receptor kinases, P13K, phosphatases, ras, raf, MAPK cascades, NㆍFB, IㆍB kinase, PKA, PKB, PKC, c-jun, c-fos, c-myc, cdks, cyclins, and related transducing proteins by tea polyphenols has been studied in our laboratory and others. The IㆍB kinase (IKK) activity in LPS-activated murine macrophages (RAW 264.7 cells) was found to be inhibited by various tea polyphenols including (-) epigallocatechin-3-gallate (EGCG), theaflavin (TF-1), theaflavin-3-gal-late (TF-2) and theaflavin-3,3'-digallate (TF-3). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other tea polyphenols. TF-3 inhibited both IKK1 and IKK2 activity and prevented the degradation of IㆍBㆍand IㆍBㆍin activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 and other tea polyphenols could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. TF-3 and other tea polyphenols blocked phosphorylation of IB from the cytosolic fraction, inhibited NFB activity and inhibited increases in inducible nitric oxide synthase levels in activated macrophage. TF-3 and other tea polyphenols also inhibited strongly the activities of xanthine oxidase, cyclooxygenase, EGF-receptor tyrosine kinase and protein kinase C. These results suggest that TF-3 and other tea polyphenols may exert their cancer chemoprevention through suppressing tumor promotion and inflammation by blocking signal transduction. The mechanisms of this inhibition may be due to the blockade of the mitogenic and differentiating signals through modulating EGFR function, MAPK cascades, NFkB activation as wll as c-myc, c-jun and c-fos expression.

Inhibitory effects of xylamine on the arterial contraction in rats (흰쥐 대동맥 수축에 대한 xylamine의 억제효과)

  • Kim, Sang-Jin;Kang, Hyung-sub;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.3
    • /
    • pp.389-397
    • /
    • 2004
  • The therapeutic efficacy of xylamine in the field of psychological medicine has been recognized for years and the drug is used to treat depression and some other conditions, but little is known about its mechanism of action on vascular system. Therefore, the present study was designed to investigate the influence of xylamine on the contractile responses of isolated rat thoracic arteries to phenylephrine(PE) and potassium chloride(KCl). Xylamine produced a concentration-dependent relaxation in PE-precontracted endothelium intact(+E) rat aortic rings, but not in a KCl-precontracted aortic rings. Also, xylamine inhibited the PE-induced contraction in concentration-dependent manner, but not in the high KCl-induced contraction in +E rings. This concentration-dependent inhibition was suppressed by the removal of the endothelium (-E). The inhibitory effects of xylamine($0.3{\mu}M$) on the PE-induced contractions were suppressed by N(G)-nitro-L-arginine(L-NNA), N(omega)-nitro-L-arginine methyl ester(L-NAME), aminoguanidine, dexamethasone, methylene blue, 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one(ODQ), indomethacin, ryanodine, tetrabutylammonium(TBA), lidocaine, procaine and 0 mM extracellular $Na^+$, but not by 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate(NCDC), lithium, nifedipine, verapamil, 0 mM extracellular $Ca^{2+}$, glibenclamide and clotrimazole. These findings suggest that xylamine could act as a vasorelaxant and direct inhibitor of arterial contraction. This vasorelaxation involves an endothelial nitric oxide (NO)/cGMP (guanosine 3',5'-cyclic monophosphate) pathway or cyclooxygenase system, and an interference with $Ca^{2+}$ release, TBA-sensitive $Ca^{2+}$-activated $K^+$ channels and $Na^+$$ channels.

Activation of SAPK and Increase in Bak Levels during Ceramide and Indomethacin-Induced Apoptosis in HT29 Cells

  • Kim, Ju-Ho;Oh, Sae-Ock;Jun, Sung-Sook;Jung, Jin-Sup;Woo, Jae-Suk;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.75-82
    • /
    • 1999
  • It has been reported that activation of sphingomyelin pathway and nonsteroidal anti-inflammatory drugs (NSAIDS) inhibit the promotion of colon carcinoma. Ceramide, a metabolite of sphingomyelin, and indomethacin were shown to induce apoptosis in colon carcinoma cells. However, the mechanisms of ceramide- and indomethacin-induced apoptosis in the colon carcinoma cells are not clearly elucidated. Recent studys showed that indomethacin-induced apoptosis in colon cancer cells through the cyclooxygenase-independent pathways, and that may be mediated by generation of ceramide. In this study, we compared effects of ceramide and indomethacin on important modulators of apoptotic processes in HT29 cells, a human colon cancer cell line. Ceramide and indomethacin induced apoptosis dose- and time- dependently. Ceramide and indomethacin increased stress-activated protein kinase (SAPK) activity, and decreased mitogen-activated protein kinase (MAPK) activity. The expression of Bak was increased by the treatment of ceramide and indomethacin. The expression of other Bcl-2 related proteins (Mcl-1, $Bcl-X_L,$ Bax) which were known to be expressed in colon epithelial cells was not changed during the ceramide- and indomethacin-induced apoptosis. Our results suggest that ceramide and indomethacin share common mechanisms for induction of apoptosis in HT29 cells.

  • PDF

Korean Red Ginseng mitigates spinal demyelination in a model of acute multiple sclerosis by downregulating p38 mitogen-activated protein kinase and nuclear factor-κB signaling pathways

  • Lee, Min Jung;Chang, Byung Joon;Oh, Seikwan;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.436-446
    • /
    • 2018
  • Background: The potential therapeutic values of Korean Red Ginseng extract (KRGE) in autoimmune disorders of nervous system have not been fully investigated. Methods: We used an acute experimental autoimmune encephalomyelitis animal model of multiple sclerosis and determined the effects and mechanism of KRGE on spinal myelination. Results: Pretreatment with KRGE (100 mg/kg, orally) for 10 days before immunization with myelin basic protein $(MBP)_{68-82}$ peptide exerted a protective effect against demyelination in the spinal cord, with inhibited recruitment and activation of immune cells including microglia, decreased mRNA expression of detrimental inflammatory mediators (interleukin-6, interferon-${\gamma}$, and cyclooxygenase-2), but increased mRNA expression of protective inflammatory mediators (insulin-like growth factor ${\beta}1$, transforming growth factor ${\beta}$, and vascular endothelial growth factor-1). These results were associated with significant downregulation of p38 mitogen-activated protein kinase and nuclear factor-${\kappa}B$ signaling pathways in microglia/macrophages, T cells, and astrocytes. Conclusion: Our findings suggest that KRGE alleviates spinal demyelination in acute experimental autoimmune encephalomyelitis through inhibiting the activation of the p38 mitogen-activated protein kinase/nuclear factor-${\kappa}B$ signaling pathway. Therefore, KRGE might be used as a new therapeutic for autoimmune disorders such as multiple sclerosis, although further investigation is needed.