• Title/Summary/Keyword: Cyclone-Bag Filter

Search Result 18, Processing Time 0.024 seconds

Characteristics of Electrostatic Cyclone-Bag Filter with Upper Inlet (상부유입식 전기 Cyclone-Bag Filter의 특성)

  • 여석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.179-190
    • /
    • 2000
  • The main object of this study was to investigate experimentally the characteristics of electrostatic cyclone-bag filter with upper tangential inlet in order to overcome the low collection efficiency for the submicron particle and high pressure drop which were main problems of general fabric bag filters. The experiment was carried out for the analysis of collection efficiency and pressure drop of electrostatic cyclone-bag filter comparing to those of fabric bag filter with various experimental parameters such as the inlet velocity(filtration velocity) and applied voltage etc. In the results the upper tangential inlet type showed higher collection efficiency for submicron particles below 2 ${\mu}{\textrm}{m}$ in diameter than that of center inlet and over 99.9% for overall collection efficiency. Pressure drop reduction ratios were shown as 40-50% for the applied voltage 0kV by centrifugal force and 70-90% for 20k V by the centrifuga and electrostatic force with the tangential inlet velocity (12-21m/s)

  • PDF

Characteristics of Cyclone-Bag Filter with Bottom Inlet (하부유입식 원심 여과집진장치의 특성)

  • Yoa, Seok-Jun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.639-650
    • /
    • 2000
  • The main object of this study was to investigate experimentally the characteristics of cyclone-bag filter with bottom inlet to decrease the high pressure drop which was one of main problems of fabric bag filter. The experiment was executed for the analysis of collection efficiency and pressure drop(specially, pressure drop of fabric filter) characteristics of the cyclone-bag filter in comparison with those of general fabric bag filter with various experimental parameters such as the inlet velocity, dust loading and variation of vortex region, etc. In the results, the tangential inlet type showed higher collection efficiency for submicron particles below $1{\mu}m$ in diameter than of center inlet, and over 99% for overall collection efficiency. For the inlet particle concentration $100mg/m^3$, pressure drop reduction ratios were shown as 15~38% with the inlet velocity in case of large bag, while 30~48% for small bag due to the increase of vortex region.

  • PDF

Emission Characterization of Particulate Matters According to the Types of Wastes from Industrial Waste Incinerator (산업폐기물 소각시설에서 폐기물 유형에 따른 입자상물질의 배출특성)

  • Park, Jeong-Ho;Suh, Jeong-Min;Jo, Jeong-Gu;Ryu, Jae-Yong;Han, Seong-Jong
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1225-1230
    • /
    • 2007
  • The emissions characteristics of particulate matters(PM) according to the types of wastes from industrial waste incinerator of 800 kg/hr treatment capacity were investigated. For this study, the incinerate waste are as follows; waste resin, waste wood, waste urethane, waste gunny, and waste paper. The particulate samples were collected to be emitted in stack and air pollution control(both cyclone and bag filter). In stack, the concentrations of PM were in the range of 2.61 to $26.51 mg/Sm^3$ and the major chemical species were C, Si, Cl, K, Na, Ca in all the wastes. In cyclone fly ash, the mean content of heavy metal were in the order of Fe > Zn > Pb > Cu > Mn > Cr > Ni > Cd > As > Hg and the heavy metal content of waste resin were Zn 34,197.5 mg/kg, Fe 27,587.6 mg/kg, Pb 6,055.8 mg/kg, respectively. In bag filter fly ash, the mean content of heavy metal were in the order of Zn > Pb > Fe > Cu > Mn > Cd > Cr > Ni > As > Hg and the heavy metal content of waste wood were Pb 36,405.2 mg/kg, Fe 15,762.9 mg/kg, Cu 9,989.5 mg/kg, Cd 2,230.1 mg/kg, respectively. Comparing the heavy metal content of both cyclone and bag filter, in cyclone, the Cr, Fe, Ni content were higher than in bag filter and the Cd, Cu, Hg content were lower than in bag filter.

CFD Analysis on the Flow in the Connection Duct of the Cyclone-Bag Hybrid Dust Collector (사이클론-백 하이브리드형 집진장치에서 유동연결부 설계조건에 따른 유동균일성 전산해석)

  • Koo, Seongmo;Oh, Wonchul;Chang, Hyuksang
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.115-126
    • /
    • 2016
  • Numerical analysis was done to evaluate the movement of the particles and the fluid inside of the cyclone-bag hybrid dust collector. Flow discharged from the cyclone in the hybrid particle collector has swirl pattern, and it results in the biased flow to the bag filters and deteriorates the collection performance of the bag filter. The current study is to evaluate the effect of the duct lengths and the baffle arrays in the connection duct by the computational methods. Main concerns of the analysis are how to improve the uniformity of the internal flow between the cyclone and the bag filter. Numerical analysis was done to check the particle removal efficiencies of the system with respect to the flow characteristics which is expressed in RMS values of the upward flow inside of the connection duct. The flow pattern inside of the connection duct is evaluated under different the duct lengths and the baffle arrays. In case of the reference geometry the RMS value of inside flow was 56.7%, and the value was decreased to 30.1% by controlling the lengths of duct. The effects of baffle was also evaluated, the RMS value of flow could be decreased 55.2% and so on. But the pressure drop across the baffles becomes high and the system efficiency becomes lower.

A Study on the Development of Dust Collection System for Hull Repair (선체 표면 공사시 발생하는 분진 수거 장치 개발에 관한 연구)

  • Yoa, S.J.
    • Journal of Power System Engineering
    • /
    • v.8 no.2
    • /
    • pp.31-38
    • /
    • 2004
  • The main purpose of this study is to investigate the characteristics of hybrid collection system combined with centrifugal force of cyclone and filtration of bag filter in one unit system. The experiment and numerical simulation are executed for the analysis of collection efficiency and pressure drop characteristics of hybrid system in comparison with those of a general fabric bag filter with the various experimental parameters such as inlet velocity(filtration velocity), dust concentration and dust type, etc.. In present system, dust particles tangentially coming into the system body are controlled by the centrifugal force effect, and the next collection is made out by the filtration mechanism in the fabric filter media. Therefore, the effective first collection causes the decrease of dust loading on the fabric filter, and it presents quite a lower pressure drop of fabric filter than that of a general fabric filter. At the inlet velocity, $21{\sim}27m/sec$ and inlet concentration(fly ash) $300mg/m^3$, pressure drops through the filter media of hybrid system are shown lower as $10{\sim}22mmH_2O$ comparing to those($17{\sim}33mmH_2O$) of a general fabric bag filter.

  • PDF

Simultaneous Removal Characteristics of Particulate and Elemental Mercury in Convergence Particulate Collector (융합형여과집진장치에서의 먼지입자와 원소수은의 제거 성능 특성)

  • Park, Young Ok;Jeong, Ju Yeong
    • Particle and aerosol research
    • /
    • v.6 no.4
    • /
    • pp.173-183
    • /
    • 2010
  • The high temperature pleated filter bags which were used during this study were made of pleated nonwoven fabric of heat and acid resistant polysulfonate fibers which can withstand the heat up to $300^{\circ}C$ and have a filtration area which is 3 to 5 times larger than the conventional round filter bags. Cartridge module packed with 3 kind of the sulfur impregnated activated-carbon based sorbents were inserted in the inner of the pleated filter bag. This type of pleated filter bag was designed to remove not only the particulate matter but also the gaseous elemental mercury. The electrostatic precipitator part can enhance the particulate removal efficiency and reduce the pressure drop of the pleated filter bag by agglomerated particles to form a more porous dust layer on the surface of the pleated bag which is increased the filter bag cleaning efficiency. In addition, the most of particles are separated from the flue gas stream through the cyclone and the electrostatic precipitator part which were installed at the lower part and main body part of the convergence particulate collector, respectively. Thus reduce particulate loading of the high temperature pleated filter bags were applied in this study to analyze the removal characteristics of particulate matter and gaseous elemental mercury.

Dust Filtration Characteristics of Pleated Filter Bags Installed in CYBAGFILTER® (주름필터를 적용한 CYBAGFILTER®의 여과성능 특성)

  • Park, Young-Ok;Roh, Hak-Jae;Rhee, Young-Woo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.483-491
    • /
    • 2008
  • The filtration characteristics of $CYBAGFILTER^{(R)}$ unit with pleated filter bags were evaluated by comparing the performance of the unit with the lower part of cyclone shape with that of the unit with conventional lower part. Results from the test were also compared with those from the previous research with the $CYBAGFILTER^{(R)}$ in which round filter bags were installed. $CYBAGFILTER^{(R)}$ is the unit which combines the centrifugal separation mechanism and the fabric filtration mechanism in a single unit for efficient removal of particulate matters. The pleated filter bags are made of pleated fabric with an extension of the filtration area about 3 times compared with the conventional round filter bags. The results from the test using pleated filter bags showed an overall collection efficiency of over 99.9% regardless of the shape of lower part installed. When the lower part of cyclone shape was installed, the filter cleaning interval was over 2 times longer compared with that when the conventional lower part was installed. At the same conditions of filtration velocity and filter pressure drop, the $CYBAGFILTER^{(R)}$ with the lower part of cyclone shape, in which the pleated filter bags are installed, can be operated with a flow rate of round 3 times higher than that with conventional round filter bags.

A Numerical Study on an Optimum Design of a Hybrid Collector Coupled with the Principle of Cyclone, Baffle and Bag-Filter (싸이클론과 배플 및 백필터 원리를 결합한 하이브리드형 집진기의 최적화 설계를 위한 수치해석)

  • Hong, Sung-Gil;Jung, Yu-Jin;Lim, Ki-Hyuk;Yoo, Jeong-Kun;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.983-989
    • /
    • 2013
  • The current research reviewed the design conditions that would maximize the efficiency of the hybrid collector that combines in one unit "cyclone-inertial impaction-bag filter". The computational analysis for the shape of cyclone entry predicts that a design that installs the guide vane at the entry of the tangential type cyclone brings a high-rpm and powerful vortex, very effective in promoting the deflection of coarse particles from the streamline at the cyclone. As the lower part of the cyclone is venturi-shaped, however, a strong flow downward of 4 to 5 m/sec persists through the lower part of the hopper, revealing the likely reentrainment of collected dust. And the removal of the venturi at the lower part of the cyclone would solve the problem of the reentrainment of collected dust. The acceleration of the flow velocity through the adjustment of the gap of the collision baffle would increase the effect of collision, but as the interference with the dust separation is expected, the original design should be kept for the baffle.

Preparation and Characterization of Polyurethane Waterproof Coatings Containing Fly Ash

  • Lee, Sung-Il;Kim, Duk-Bae;Yang, Go-Su;Kim, Wan-Young;Byoun, Youn-Seop;Lee, Youn-Sik
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.243-250
    • /
    • 2003
  • Polyurethane waterproof (PW) coatings are increasingly demanded in Korea for repairing cracks on old building roofs and construction of many sporting facilities. Calcium carbonate, a common filler, is incorporated in PW compositions. In this study, PW coatings were prepared by substituting a part of calcium carbonate with fly ash. The maximum amounts of calcium carbonate which can be substituted by fly ash obtained in the cyclone and bag filter dust collectors were 20 and 10%, respectively. It was found that the curing rate of PWs ran be controlled by varying the amount of Pb-octoate catalyst. The elongations at break as well as tensile strength and tear strength of PW coatings containing fly ash could also be adjusted such that their values were comparable to those of a standard PW coating by varying relative amounts of some components. However, the amount of cadmium, mercury, and lead leached from PW coatings containing fly ash obtained from the bag filter collector exceeded the respective allowed upper limits, mainly due to the initial high contents of them in the fly ash. On the other hand, PW coatings containing fly ash obtained from the cyclone collector exhibited better mechanical properties and did not release any significant amounts of the heavy metals. Thus, it was concluded that PW coatings containing fly ash can be utilized for practical applications as long as an appropriate fly ash is used.

Application of Cyclone to Removal of Hot Particulate in Hot Cell (Hot Cell 내의 고방사능 분진 제거를 위한 사이클론 적용 실험)

  • Kim Gye Nam;Lee Sung Yeol;Won Hui Jun;Jung Chong Hun;Oh Won Zin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.67-75
    • /
    • 2005
  • The size and main ingredient of hot particulate generated during the nuclide experiment in hot cells of nuclear facilities were 0.5300 $\mu$m and UO$\_2$. A cyclone filter equipment which consists of a cyclone and Bag/HEPA filter was devised to remove hot particulate generated during the nuclide experiment in hot cells of nuclear facilities. The experimental conditions to maximize the collection efficiency of hot particulate were suggested through experiments done with the cyclone filter equipment. With the large size of simulated particulate, the collection efficiency of the particulate was high. When the size of simulated particulate was more than 5 $\mu$m, the collection efficiency of the particulate was more than $80\%$ and when the size of simulated particulate was less than 1.0 urn, the collection efficiency decreased by less than $70\%$. If the inflow velocity of simulated particulate was increased, the collection efficiency of the particulate was also increased. When the inflow velocity of simulated particulate was more than 12m/sec, the collection efficiency was higher than $70\%$, but after 17 m/sec inflow velocity, no change observed. The collection efficiency of the simulated particulate can be enhanced with the length of vortex finder inside the chamber. With the length of vortex finder, 7.2cm, the observed collection efficiency of the particulate was the maximum. Moreover, when the sub-cone was attached under the cyclone, the collection efficiency of cyclone increased $2\%$. It was found that effect by attachment of sub-cone was not serious.

  • PDF