• Title/Summary/Keyword: Cyclone Separator

Search Result 50, Processing Time 0.026 seconds

Performance of cyclone separator for syngas production in downdraft gasifier

  • Kumara, Sunil;Shukla, S.K.
    • Advances in Energy Research
    • /
    • v.4 no.3
    • /
    • pp.223-237
    • /
    • 2016
  • The excess use of conventional sources of energy by the industries and power sector result in acute shortage of energy produced by fossil fuel. To overcome this energy crisis, biomass feedstock is used to produce syngas or producer gas. For cleaning the dust particle present in the producer gas cyclone separators are largely used. In this paper we investigate the performance parameters of cyclone separator mainly efficiency and pressure drop for different feedstock. Cyclone performance has been evaluated based on experimentation and empirical approach using Leith and Licht model. The same has also been calculated by using turbulent RSM in Ansys Fluent for Wood and Coconut shell feedstock. Experimental results show that using feed stock with 10 % Calcium oxide (CaO) by weight, the efficiency of cyclone got reduced from 71.87% to 70.75% for wood feed stock, whereas in case of coconut shell, the cyclone efficiency got reduced from 78% to 73.44%. It is also seen that Leith and Licht model and Reynolds stress model (RMS) predicts very close to the particle collection efficiency evaluated by using experimental data.

A Numerical Analysis of Flow Characteristics and Oil Separation Performance for Cyclone Oil Separator Designs (사이클론 오일분리 장치 형상변화에 따른 유동 및 오일분리 성능에 관한 해석적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Woo, Keun-Sup;Yoon, Yu-Bin;Park, Young-Joon;Lee, Dug-Young;Kim, Hyun-Chul;Na, Byung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.22-28
    • /
    • 2008
  • A closed type crankcase ventilation system has been adopted to engines to prevent emission of blow-by gas to atmosphere. In the early closed type crankcase ventilation system, blow-by gas which contains engine lubricating oil is re-circulated into the intake system. The blow-by gas containing oil mist leads to increased harmful emissions and engine problems. To reduce loss of the engine oil, a highly-efficient oil separation device is required. Principle of a cyclone oil separator is to utilize centrifugal force in the separator and, therefore, oil separator designs depend on rotational flow which causes the centrifugal force. In this paper, flow characteristics and oil separation performances for cyclone type designs are calculated with CFD methodology. In the CFD model, oil particle was injected on a inlet surface with Rosin-Rammler distribution and uniform distribution. The major design parameters considered in the analysis model are inlet area, cone length and outlet depth of the oil separator. As results, reducing inlet area and increasing cone length increase oil separation performance. Changes in outlet depth could avoid interference between rotational flow and outlet flow in the cyclone oil separator.

Numerical Study of Axial-flow Cyclone Cluster for Subway Station HVAC system (지하역사 공기조화기용 축류형 사이클론 클러스터의 수치해석적 성능 평가 연구)

  • Kim, Myeoung-Joon;Kim, Ho-Joong;Kim, Jin-Kwan;Kwon, Soon-Bark;Kim, Tae-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.757-761
    • /
    • 2009
  • Axial-flow cyclone separator cluster can be used for a dust removal device inside a heating, ventilation, and air conditioning(HVAC) system of subway station. In this study, 3-dimensional computational fluid dynamics(CFD) analysis was performed to compare single unit axial-flow cyclone with couple unit axial-flow cyclone cluster. It is shown that the performance of cyclone separator is not influenced by number of single units but influenced by ability of single unit.

  • PDF

Evaluation of removal performance of a novel two-stage cylinder type cyclone against water and oil droplets (2단 실린더형 싸이클론의 물 및 오일 액적 제거 성능 분석 연구)

  • Kim, Sumin;Kim, Hak-Joon;Kim, Myungjoon;Han, Bangwoo;Woo, Chang Gyu;Kim, Yong-Jin
    • Particle and aerosol research
    • /
    • v.13 no.3
    • /
    • pp.119-125
    • /
    • 2017
  • A novel two stage cylindrical cyclone was developed for a 3 phase separator in shale oil production industry. The cyclone performance was compared with a cone type cyclone and multi cyclone at the same experimental condition using water and oil mists generated by a humidifier and atomizer at the flow rate 1 to $2m^3/min$. The removal efficiency of total suspended water droplets by the novel cyclone, calculated using inlet and outlet concentrations measured by an optical particle counter, was 99% which is higher than 90% of oil droplet removal efficiency at $2m^3/min$. It might be due to the evaporation of small water droplets during the tests. The water and oil droplet removal performance of the novel cyclone based on the quality factor which is a function of pressure drop and removal efficiency was the highest among three cyclones. The results indicate that the cyclone could be an economical device to remove water and oil mists from shale gas generation processes where a huge three phase separator is commonly used.

Design of the Outlet-Port Tube of a Cyclone-Type Oil Separator for a Compressor (사이클론 방식 유분리기의 출구 튜브 설계)

  • Jang, Seongil;Ahn, Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.402-408
    • /
    • 2015
  • A series of numerical simulations have been carried out to study the performances of cyclone-type oil separators, which are designed for refrigeration-system compressors. The corresponding working fluid is R22, which is a typical refrigerant, whereby a mineral-oil droplet is supplied (Ed-highlight-My interpretation). The outlet-tube length in relation to the total chamber volume is considered a design parameter. Depending on the tube length, the separation efficiency varies from 98.7% to 99.3%, while the predicted pressure drop is between 5.1 kPa and 6.4 kPa. Considering both the pressure drop and separation efficiency, the length of the outlet-port tube of the separator is 152 mm.

Numerical investigation of ceramic particle movement for injected gas flow rate in cyclone separator system (사이클론 분리기 시스템 내에서의 가스 주입 유속에 따른 세라믹 입자 거동 전산모사)

  • 우효상;심광보;정용재
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.145-151
    • /
    • 2003
  • Using computational fluid dynamics (CFD) method, we investigated three-dimensional fluid flow field and particle movement with respect to the injected gas flow rate variation in typical cyclone separator system. The results of numerical investigation were deduced by coupling the analysis of fluid flow field with Wavier-stokes equation and the tracking of the particle trajectory with Langrangian approach. It was shown that the increasing of injected gas flow rate resulted in the increasing of pressure loss in the separator. This change of inner pressure had an effect on an aspect of the fluid flow in the separator. Particle movement was determined by fluid flow in the separator and was fully depended on a diameter of particles under the fixed flow rate. Increasing of injected gas flow rate was led to an increasing of the trace of particle, so the particles moved to the lower part of the separator. For this reason, the minimum diameters of the particles were decreased and increased the separation rate under the fixed particle diameter. In conclusion, the changes of injected gas flow rate have an important factor to the fluctuation of the fluid flow field and particle trajectory in the separator.

Numerical Analysis of Axial-Flow Cyclone Separator for Subway Station HVAC System Pre-Filter

  • Kim, Myung-Joon;Kim, Ho-Joong;Kwon, Soon-Bark;Kim, Se-Young;Kim, Jin-Kwan;Shin, Chang-Hun;Bae, Sung-Joon;Hwang, Sun-Ho;Kim, Tae-Sung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.3
    • /
    • pp.94-99
    • /
    • 2009
  • In the Korean subway station, three types of pre-filters, which include auto filter, electrostatic precipitator (ESP) and auto cleaning demister, are widely used. However, these devices have some problems such as the difficulty of maintenance and high operating cost. In this study, axial-flow cyclone separator was employed as a pre-filter inside a heating, ventilation, and air conditioning (HVAC) system. 3-dimensional computational fluid dynamics (CFD) analysis was performed on a single unit axial-flow cyclone and coupled unit axial-flow cyclone. Calculated and measured pressure drop of the designed axial-flow cyclone were found be comparable to other types of pre-filters and the observed cut-off diameter was less than 10 micron. Considering lower operating and maintenance cost, axial-flow cyclone was proved to be a better solution as a pre-filter.