• Title/Summary/Keyword: Cyclone Heat Potential

Search Result 4, Processing Time 0.022 seconds

Seasonal variability of cyclone heat potential and cyclonic responses in the Bay of Bengal characterized using moored observatories

  • Vengatesan, G.;Shanmugam, P.;Venkatesan, R.;Vedachalam, N.;Joseph, Jossia K.
    • Ocean Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.181-199
    • /
    • 2020
  • Cyclone Heat Potential (CHP) is an essential parameter for accurate prediction of the intensity of tropical cyclones. The variability of the heat storage in the near-surface layers and the vertical stratification near the surface due to large fresh water inputs create challenges in predicting the intraseasonal and interannual evolution of monsoons and tropical cyclones in the Bay of Bengal. This paper for the first time presents the D26- referenced cyclone heat potential observed in the Bay of Bengal during the period 2012-17 based on the in-situ data collected from 5.5 million demanding offshore instrument-hours of operation in the Ocean Moored Buoy Network for Northern Indian Ocean (OMNI) buoy network by the National Institute of Ocean Technology. It is observed that the CHP in the Bay of Bengal varied from 0-220 kJ/㎠ during various seasons. From the moored buoy observations, a CHP of ~ 90 kJ/㎠ with the D26 isotherm of minimum 100m is favorable for the intensification of the post-monsoon tropical cyclones. The responses of the D26 thermal structure during major tropical cyclone events in the Bay of Bengal are also presented.

Development of Nano Ceramic Filter for the Removal of Ultra Fine Particles (초미세입자 제거를 위한 고온용 나노 세라믹 필터 개발)

  • Kim, Jong-Won;Ahn, Young-Chull;Yi, Byeong-Kwon;Jeong, Hyeon-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Airborne particulate matters have two modes of size distributions of coarse mode and fine mode. The coarse mode which is formed by break down mechanism of large particles has a peak around the $100\;{\mu}m$, and the fine mode formed by condensation and build up mechanism of evaporated vapors has a peak at several ${\mu}m$. The coarse mode particles can be removed easily by conventional collecting equipments such as a cyclone, an electrostatic precipitator, and a filter, however the fine mode particles can not be collected easily. Usually the fine mode particles are generated in the high temperature conditions especially through boilers and incinerators, so the high efficient and temperature filter is essential for the filtration. In this study, a nano ceramic filter for the removal of fine particles in the high temperature is developed and tested for several characteristics. The nano ceramic filter has double layer of micro and nano structure and the pressure drop and the filtration efficiency for $0.31\;{\mu}m$ at 3 cm/s are 15.45 mmAq, and 96.75%, respectively. The thermal conductivity is $0.038\;W/m{\cdot}K$, and the coefficient of water vapor permeability is $3.63\;g/m^2{\cdot}h{\cdot}mmHg$. It is considered that the sensible heat exchange rate is very poor because the low thermal conductivity but it has high potential to exchange latent heat.

A Study on the Heavy Rainfall Cases Associated with Low Level Jet Inflow along the Changma Front (장마전선상에서 하층제트 유입으로 인한 집중호우에 관한 연구)

  • Choi, Ji-Young;Shin, Ki-Chang;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.44-57
    • /
    • 2011
  • In general, heavy rainfall in Korea is mostly associated with inflow of 850hPa low-level jet. It transports abundant heat and moisture flux to the Changma front. In this study, synoptic characteristics of heavy rainfall in Korea from a case study is examined by classifying heavy rainfall cases with synoptic patterns, in particular distribution of upper- and low-level jets, western North Pacific high, and moisture flux. The surface and upper-level weather charts including auxiliary analysis chart and radar and satellite images obtained from the Korea Meteorological Administration, and 500hPa geopotential heights from NCEP/NCAR are used and then KLAPS is applied to understand the local atmospheric structure associated with heavy rainfall. Results show that maximum frequency in 60 heavy rainfall cases with more than 150mm/day appears in the Changma type of 43 cases (a proportion in relation to a whole is 52%) including the combined Changma types with typhoon and cyclone. As indicated in previous studies, most heavy rainfall cases are related to inflow of low-level jet. In addition, synoptic characteristics based on the analyses of weather charts, radar and satellite images, and KLAPS in heavy rainfall case of 12 July, 2009 reveal that the atmospheric vertical structure in particular equivalent potential temperature favorable for effective inflow of warm and moist southwesterly into the Changma front is linked to large potential instability and the strong convergence accompanied with low-level jet around Suwon contributes to atmospheric upsliding along the Changma front, producing heavy rainfall.

A Case Study of Heavy Snowfall with Thunder and Lightning in Youngdong Area (뇌전을 동반한 영동지역 대설 사례연구)

  • Kim, Hae-Min;Jung, Sueng-Pill;In, So-Ra;Choi, Byoung-Choel
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.187-200
    • /
    • 2018
  • The heavy snowfall phenomenon with thunder and lightning occurred in Yeongdong coastal region on 20 January 2017. Amount of snow on that day was a maximum of 47 cm and was concentrated in a short time (2 hours) at the Yeongdong coastal area. The mechanism of thundersnow was investigated to describe in detail using observational data and numerical simulation (Weather Research and Forecast, WRF) applied lightning option. The results show that a convective cloud occurred at the Yeongdong coastal area. The east wind flow was generated and the pressure gradient force was maximized by the rapidly developed cyclone. The cold and dry air in the upper atmosphere has descended (so called tropopause folding) atmospheric lower layer at precipitation peak time (1200 LST). In addition, latent heat in the lower atmosphere layer and warm sea surface temperature caused thermal instability. The convective cloud caused by the strong thermal instability was developed up to 6 km at that time. And the backdoor cold front was determined by the change characteristics of meteorological elements and shear line in the east sea. Instability indexes such as Total totals Index (TT) and Lightning Potential Index (LPI) are also confirmed as one of good predictability indicates for the explosive precipitation of convective rainfall.