• Title/Summary/Keyword: Cycloalkenes

Search Result 5, Processing Time 0.02 seconds

Autoxidation of Cycloalkenes by the System “Molecular Oxygen-bis(acetylacetonato) Cobalt (II) Complex-butyraldehyde”

  • Fang, Zhao;Tang, Rui-Ren;Zhang, Rui-Rong;Huang, Ke-long
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2208-2212
    • /
    • 2009
  • Oxidation of cycloalkenes with $O_2$ promoted by heterogeneous bis(acetylacetonato) cobalt (II) complex catalyst which can be recycled has been performed under mild conditions. It was found that $\beta$-ionone, cyclohexene, 1-methylcyclohexene, and $\alpha$-ionone were efficiently oxidized with $O_2$ in the presence of Co (II) complex and butyraldehyde at $55\;{^{\circ}C}$. A simple treatment of the resulting products led to epoxides as predominant products and a small amounts of allylic oxides, the chemoselectivity for the former being 82.1 - 90.8% with a 70.6 - 98.6% substrate conversion. On the other hand, oxidation of 1-phenylcyclohexene, 1-cyclohex-1-enylethan-1-one, $\alpha$-pinene, and $\beta$-pinene gave allylic oxides as major products.

Ozonolyses of Cycloalkenes: Trapping of Carbonyl Oxide by Trifluoroacetophenone

  • 이주연;이치원;허태성
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1244-1248
    • /
    • 1998
  • Ozonolysis reactions of cyclic olefins 1a-c and norbomene In in the presence of trifluoroactophenone 6 provided the corresponding cross-ozonides 7a-c and 7n. Further reactions of ozonides 7a-c and 7n with the independently prepared carbonyl oxide 11 gave diozonides of structure l0a-c and 10n. The ozonolysis of 1methylcyclopentene 12a and 1-methylcyclohexene 12b in the presence of trifluoroactophenone 6 provided exclusively ozonide 15 and 16 derived from capture of carbonyl oxide 13. All of the new ozonides have been isolated as pure substances and characterized by their 1H NMR and 13C NMR spectra.

Organic Synthesis Based on Ruthenium Carbene Catalyzed Metathesis Reactions and Pyridinium Salt Photochemistry (루테늄 카벤 촉매 복분해 상호교환 반응과 피리듐 염 광화학반응을 이용한 유기 합성)

  • Cho, Dae-Won;Mariano, Patrick S.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.3
    • /
    • pp.261-268
    • /
    • 2010
  • In this account, three synthetic methodologies that serve as the basis for new strategies for the preparation of selected natural products are briefly introduced. One process, involving ruthenium carbene catalyzed ring rearrangement metathesis developed by Grubbs and his coworkers, transforms alkene-tethered cycloalkenes to thermodynamically more favored alkene-tethered cycloalkenes. Another ruthenium carbene promoted reaction, referred to as dienyne metathesis, was uncovered in early studies by Grubbs and his collaborators. This process converts dienynes to fused bicyclic conjugated dienes. Finally, a novel photo-electrocyclization reaction of pyridinium salts, which leads to the formation of 4-aminocyclopenten-3,5-diol derivatives, is discussed. Examples are provided to show the utility of these methodologies in natural product synthesis. Emphasis is given to studies in which pyridinium salt photochemistry is coupled with ring rearrangement and dienyne metathesis in routes for the synthesis of polyhydroxyalted indolizidine alkaloids and the construction of the tricyclic core of the lepadiformine and cylindricine alkaloids.