• Title/Summary/Keyword: Cyclization Reaction

Search Result 155, Processing Time 0.02 seconds

Mechanism of Lubricity Improvement by Biodiesels (바이오디젤 윤활성 향상 메커니즘)

  • Lim, Young-Kwan;Lee, Jae-Min;Kim, Jong-Ryeol;Ha, Jong-Han
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.95-100
    • /
    • 2016
  • As an alternative fuel, biodiesel has excellent lubricating property. Previously, our research group reported that the properties of biodiesels depended on their composed molecular structure. In this study, we investigate lubricity and the mechanism of lubricity improvement of synthesized biodiesel molecules. We synthesize four types of biodiesel components from fatty acid via fisher esterification and soybean biodiesel from soybean oil via transesterification in high yield (92-96%). We analyze the lubricity of the five 5 types of biodiesel using HFRR (high frequency reciprocating rig). We estimate that the mechanism of lubricity is relevant to the molecular structure and structure conversion of biodiesel. The test results indicate that the longer the length of molecules and the higher the content of olefin, the better the lubricity of the biodiesel molecules. However, the wear scar size of the first test samples’ do not show a regular pattern with the wear scar size of the second test samples’. Moreover, we investigated the structure conversion of the biodiesels by using GC-MS for the recovered biodiesel samples from the HFRR test. However, we do not detect structure conversion. Thus, we conclude that the lubricity of biodiesel depends on how effectively solid adsorption and boundary lubrication occurs based on the size of the molecule and the content of olefin in the molecule. In addition, HFRR test condition in not sufficient for Diels-Alder cyclization of biodiesel components.

Preparation and Properties of PAA/PHA/Organoclay Nanocomposite (PAA/PHA/Organoclay 나노복합재료의 제조 및 특성)

  • Yoon, Doo-Soo;Choi, Jae-Kon;Jo, Byung-Wook
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.326-332
    • /
    • 2010
  • Nanocomposite films were prepared by blending poly(amic acid)(PAA), poly(o-hydroxyamide)( PHA) and organically modified montmorillonite (OMMT) that has a layered structure. XRD, SEM and TEM were used to study the morphology of PAA/PHA nanocomposites, and DMA, TGA, UTM, LOI and PCFC techniques were used to characterize the mechanical and thermal properties, and flame retardancy of the nanocomposites. TEM images revealed that OMMT layers were well dispersed in the PAA/PHA matrix and showed exfoliation and intercalation behavior. The addition of 3 wt% OMMT to the PAA/PHA blend increased the initial modulus of PAA/ PHA blend to 3.68 GPa that was ca. 48% higher than that of the control PAA/PHA blend. Above 4 wt%, however, both the initial modulus and the tensile strength were found to decrease, which might be due to the aggregation of OMMT in PAA/PHA matrix. When the OMMT content was below 3 wt%, the thermal stability and flame retardancy of the PAA/PHA nanocomposites increased with increasing OMMT content.

Physical Properties and Flame Retardency of Polyhydroxyamides (PHAs) Having Pendant Groups in the Main Chain (주사슬에 곁사슬기를 갖는 폴리히드록시아미드의 물성 및 난연특성)

  • Yoon, Doo-Soo;Choi, Jae-Kon;Jo, Byung-Wook
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.478-485
    • /
    • 2006
  • Physical properties and flammability of polyhydroxyamides (PHAs) haying poly (ethylene-glycol) methyl ether (MPEG) and/or dimethylphenoxy pendants were studied by using DSC, TGA, FTIR, pyrolysis combustion flow calorimeter (PCFC), and X-ray diffractometer. The degradation temperatures of the polymers were recorded in the ranges of $276{\sim}396^{\circ}C$ in air. PCFC results showed that the heat release (HR) capacity and total heat release (total HR) values of the PHAs were increased with in-creasing molecular weight of MPEG. In case of M-PHA 2 annealed at $290^{\circ}C$, the values of HR capacity were siginificantly decreased from 253 to 42 J/gK, and 60% weight loss temperatures increased from 408 to $856^{\circ}C$ with an annealing temperature. The activation energy for the decomposition reaction of the PHAs showed in the range of $129.3{\sim}235.1kJ/mol$, which increased with increasing conversion. Tensile modulus of PHAs were decreased as increasing chain of MPEG, and showed an increase more than initial modulus after converted to PBOs.

Synthesis of New 4-Oxo-2-Thioxo-1,2,3,4-Tetrahydropyrimidine Derivatives with an Incorporated Thiazolidinone Moiety and Testing Their Possible Serine Protease and Cercarial Elastase Inhibitory Effects with a Possible Prospective to Block Penetration of Schistosoma mansoni Cercariae into the Mice Skin

  • Bahgat Mahmoud Mohamed;Maghraby Amany Sayed;Heiba Mogeda Emam;Ruppel Andreas;Fathalla Omar Abd-elfattah Mohamed
    • Archives of Pharmacal Research
    • /
    • v.28 no.9
    • /
    • pp.1002-1012
    • /
    • 2005
  • 5-Substituted 4-oxo-2-thioxo-1,,2,3,4-tetrahydropyrimidine were synthesized by interaction of 4­oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-sulfonylhydrazide with some aldehydes to give the corresponding Schiff-bases, which after cyclization gave corresponding thiazolidinones. For some of the thiazolidinones, Mannich bases reaction was carried out. All the derivatives were tested for their possible inhibitory effect on Schistosoma mansoni cercarial elastase (CE). Only, N'-(4-methylbenzyledine)-4-oxo-2-thioxo-1,2 ,3,4-tetrahydropyrimidine-5-sulfonylhydrazide was found to have potent inhibitory effect on the CE activity with $IC_{50} = 264{\mu}M.$ Upon its use as a paint for mice tails before infection with S. mansoni cercariae, the compound formulated in jojoba oil caused a significant reduction ($93\%$; P-value = 0.0002) in the worm burden. IgG & IgM in mice sera were measured by using several S. mansoni antigens by ELISA. Sera from treated infected mice (TIM) 2, 4, and 6 weeks (W) post infection (PI) showed 1.2 folds lower, 1.2 folds higher, 1.7 folds lower IgM reactivity against soluble cercarial antigenic preparation (CAP), respectively, when compared with sera collected from infected untreated mice (IUM). Sera from TIM 2, 4, and 6WPI showed 1.3, 1.6, and 1.7 folds higher IgG reactivity, respectively against CAP than the IgG reactivity from IUM. Sera from TIM 2, 4 and 6WPI showed 1.5, 1.2 folds lower and 1.4 folds higher IgM reactivity, respectively against soluble worm antigenic preparation (SWAP) when compared with sera collected from IUM. Sera from TIM 2, 4, and 6WPI showed 1.4, 1 folds lower and 1 fold higher IgG reactivity, respectivley to SWAP when compared with sera from IUM. Sera from TIM 2, 4, and 6WPI had generaly lower IgM and IgG reactivities against soluble egg antigen (SEA) when compared with sera from IUM.

Synthesis and Thermal Properties of Aromatic Poly(o-hydroxyamide)s Containing Phenylene Diimide Unit (Phenylene Diimide 단위를 포함한 방향족 Poly(o-hydroxyamide)s의 합성 및 열적 특성)

  • Lee, Eung-Jae;Yoon, Doo-Soo;Choi, Jae-Kon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6029-6038
    • /
    • 2013
  • In this study we attempt to modify the backbone structure and improve processibility of PBO having high melting and glass transition temperature. A series of aromatic poly(o-hydroxyamide)s(PHAs) were synthesized by direct polycondensaton of diacides containing diimide unit with two types of bis(o-aminophenol)s including 3,3'-dihydroxybenzidine and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane. PHAs were studied by FT-IR, $^1H$-NMR, DSC and TGA. PHAs exhibited inherent viscosities in the range of 0.34~0.65 dL/g at $35^{\circ}C$ in DMAc solution. The PHA 1 and 6F-PHA 6, introducing o-phenylene unit in the main chain showed excellent solubilities in aprotic solvents such as NMP etc. However, the PHA 3, having p-phenylene unit was not even dissolved perfectly with LiCl salt. 6F-PHAs were readily soluble at room temperature in aprotic solvents except 6F-PHA 3. But they showed better solubility than that of PHAs. The polybenzoxazoles(PBOs) were quite insoluble in other solvents except partially soluble in sulfuric acid. PBOs exhibited relatively high glass transition temperatures(Tg) in the range of 306~$311^{\circ}C$ by DSC. The maximum weight loss temperature and char yields of PHA3 and 6F-PHA3 showed the highest values of $658^{\circ}C$ and $653^{\circ}C$, 62.6 % and 62.1 %, respectively.