• Title/Summary/Keyword: Cyclins

Search Result 54, Processing Time 0.03 seconds

Recent Progress in Research on Anticancer Activities of Ginsenoside-Rg3 (Ginsenoside Rg3의 항암효능 연구의 진보)

  • Nam, Ki Yeul;Choi, Jae Eul;Hong, Se Chul;Pyo, Mi Kyung;Park, Jong Dae
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • Ginsenoside Rg3 (G-Rg3) is one of protopanaxadiol ginsenosides characteristic of red ginseng, steamed and dried ginseng (Panax ginseng), which has recently attracted much attention for its antitumor properties in vitro and in vivo animal models. Experimental studies have demonstrated that it could promote cancer cell apoptosis, inhibit cancer cell growth, the apoptosis of cancer cells, adhesion, invasion and metastasis, and also prevent an angiogenetic formation in prostate, breast, ovarian, colorectal, gastric, liver and lung cancer etc. It has shown the antitumor activities by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (vascular endothelial growth factor), tumor suppressors (p53 and p21), cell death mediators (caspases, Bcl-2, Bax), inflammatory response molecules ($NF-{\kappa}B$ and COX-2), protein kinases (JNK, Akt, and AMP-activated protein kinase) and Wnt/${\beta}$-catenin signaling. In addition, the combination of Rg3 and chemotherapeutic agents have synergistically enhanced therapeutic efficacy and reduced antagonistically side effects. Furthermore, it can reverse the multidrug resistance of cancer cells, prolong the survival duration and improve life quality of cancer patients. Taken together, accumulating evidences could provide the potential of G-Rg3 in the treatment of cancers and the feasibility of further randomized placebo controlled clinical trials.

A Fermented Ginseng Extract, BST204, Inhibits Proliferation and Motility of Human Colon Cancer Cells

  • Park, Jong-Woo;Lee, Jae-Cheol;Ann, So-Ra;Seo, Dong-Wan;Choi, Wahn-Soo;Yoo, Young-Hyo;Park, Sun-Kyu;Choi, Jung-Young;Um, Sung-Hee;Ahn, Seong-Hoon;Han, Jeung-Whan
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • Panax ginseng CA Meyer, a herb from the Araliaceae, has traditionally been used as a medicinal plant in Asian countries. Ginseng extract fermented by ginsenoside-${\beta}$-glucosidase treatment is enriched in ginsenosides such as Rh2 and Rg3. Here we show that a fermented ginseng extract, BST204, has anti-proliferative and anti-invasive effects on HT-29 human colon cancer cells. Treatment of HT-29 cells with BST204 induced cell cycle arrest at $G_1$ phase without progression to apoptosis. This cell cycle arrest was accompanied by up-regulation of tumor suppressor proteins, p53 and p21$^{WAF1/Cip1}$, down-regulation of the cyclin-dependent kinase/cyclins, Cdk2, cyclin E, and cyclin D1 involved in $G_1$ or $G_1/S$ transition, and decrease in the phosphorylated form of retinoblastoma protein. In addition, BST204 suppressed the migration of HT-29 cells induced by 12-O-tetradecanoylphorbol-13-acetate, which correlated with the inhibition of metalloproteinase-9 activity and extracellular signal-regulated kinase activity. The effects of BST204 on the proliferation and the invasiveness of HT-29 cells were similar to those of Rh2. Taken together, the results suggest that fermentation of ginseng extract with ginsenoside-${\beta}$-glucosidase enhanced the anti-proliferative and the anti-invasive activity against human colon cancer cells and these anti-tumor effects of BST204 might be mediated in part by enriched Rh2.

Effect of Hericium erinaceus Extract on Cancer Cell Growth and Expression of Cell Cycle Associated Proteins (노루궁뎅이 버섯 추출물이 암세포의 성장과 세포주기 조절단백질에 미치는 영향)

  • 박선희;장종선;이갑랑
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.6
    • /
    • pp.931-936
    • /
    • 2003
  • We investigated inhibitory effects of Hericium erinaceus on the growth of cancer cells and the expression of cell cycle regulators, cyclins. Anticancer effects of Hericium erinaceus extract and fractions against cancer cell lines including HepG2 and HT29 were investigated. The methanol extract, the hexane fraction, the chloroform fraction and the ethylacetate fraction of Hericiu erinacew inhibited growth of cancer cells but they had no effect on the cytotoxicity of normal human liver cells under the same conditions. As shown by western blot analysis, the expression of cyclin B1 known as cell cycle regulator was markedly decreased after treatment with Hericium erinaceus extract in HepG2 cells. These results suggest that antiproliferative effect of Hericaum erinaceus extract is associated with markedly decreased expression of cyclin B1.

Effects of Rhus verniciflua Stokes Extract on Cell Viability, Cell Cycle Progression and Apoptosis of AGS Cell (건칠(乾漆)이 위암세포의 활성, 세포사멸 및 세포주기관련 유전자 발현에 미치는 영향)

  • An, Jin-Yeong;Ko, Seong-Gyu;Ko, Heung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.701-709
    • /
    • 2006
  • The Rhus verniciflua Stokes (乾漆-RVS) has been used in traditional East Asia medicine for the therapy of gastritis, stomach cancer, although the mechanism for the biological activity is unclear. In the present study aims to investigate RVS extract contributes to growth inhibitory effect and it's the molecular mechanism on the human gastric cancer cells. AGS (gastric cancer cells) and RIEI (normal cells) were treated to different concentrations and periods of RVS extract $(10{\;}{\sim{{\;}100{\;}ug/mil)$. Growth inhibitory effect was analyzed by measuring FACS study and MTS assay. Cell cycle inhibition was confirmed by measuring CDK2 kinase activity by immunoprecipitation and kinase assay. And apoptosis was confirmed by surveying caspase cascades activation using a pan caspase inhibitor Exposure to RVS extract (50 ug/mll) resulted in a synergistic inhibitory effect on cell growth in AGS cells. Growth inhibition was related with the inhibition of proliferation and induction of apoptosis. The extract induces Gl -cell cycle arrest through the regulation of cyclins, the induction of p27kip1, and the decrease CDK2 kinase activity. And upregulated p27kip1 level is caused by protein stability increment by the reduction of S-phase kinase-associated protein 2 (Skp2), a key molecule related with p27kip1 ubiquitination and degradation, and do novo protein synthesis. Besides, 乾漆 extract induces apoptosis through the expression of Bax, poly(ADP-ribose) polymerase (PARP) and activation of caspase-3. RVS extract induces Gl -cell cycle arrest via accumulation of p27kip1 and apoptosis in human gastric cancer cells but not in normal cells, therefore we suggest that the extract can be used as a novel class of anti-cancer drugs.

Anti-Cancer Effect of IN-2001 in T47D Human Breast Cancer

  • Joung, Ki-Eun;Min, Kyung-Nan;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.81-88
    • /
    • 2012
  • Histone deacetylases (HDACs) are enzymes involved in the remodelling of chromatin, and have a key role in the epigenetic regulation of gene expression. Histone deacetylase (HDAC) inhibitors are emerging as an exciting new class of potential anti-cancer agents. In recent years, a number of structurally diverse HDAC inhibitors have been identifi ed and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. However, the underlying molecular mechanisms remain unclear. This study aimed at investigating the anti-tumor activity of various HDAC inhibitors, IN-2001, using T47D human breast cancer cells. Moreover, the possible mechanism by which HDAC inhibitors exhibit anti-tumor activity was also explored. In estrogen receptor positive T47D cells, IN-2001, HDAC inhibitor showed anti-proliferative effects in dose-and time-dependent manner. In T47D human breast cancer cells showed anti-tumor activity of IN-2001 and the growth inhibitory effects of IN-2001 were related to the cell cycle arrest and induction of apoptosis. Flow cytometry studies revealed that IN-2001 showed accumulation of cells at $G_2$/M phase. At the same time, IN-2001 treatment time-dependently increased sub-$G_1$ population, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with induction of cdk inhibitor expression. In T47D cells, IN-2001 as well as other HDAC inhibitors treatment significantly increased $p21^{WAF1}$ and $p27^{KIP1}$ expression. In addition, thymidylate synthase, an essential enzyme for DNA replication and repair, was down-regulated by IN-2001 and other HDAC inhibitors in the T47D human breast cancer cells. In summary, IN-2001 with a higher potency than other HDAC inhibitors induced growth inhibition, cell cycle arrest, and eventual apoptosis in human breast cancer possibly through modulation of cell cycle and apoptosis regulatory proteins, such as cdk inhibitors, cyclins, and thymidylate synthase.

Cancer Chemoprevention by Tea Polyphenols Through Modulating Signal Transduction Pathways

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.561-571
    • /
    • 2002
  • The action mechanisms of several chemopreventive agents derived from herbal medicine and edible plants have become attractive issues in cancer research. Tea is the most widely consumed beverage worldwide. Recently, the cancer chemopreventive actions of tea have been intensively investigated. It have been demonstrated that the active principles of tea were attributed to their tea polyphenols. Recently, tremendous progress has been made in elucidating the molecular mechanisms of cancer chemoprevention by tea and tea polyphenols. The suppression of various tumor biomarkers including growth factor receptor tyrosine kinases, cytokine receptor kinases, P13K, phosphatases, ras, raf, MAPK cascades, NㆍFB, IㆍB kinase, PKA, PKB, PKC, c-jun, c-fos, c-myc, cdks, cyclins, and related transducing proteins by tea polyphenols has been studied in our laboratory and others. The IㆍB kinase (IKK) activity in LPS-activated murine macrophages (RAW 264.7 cells) was found to be inhibited by various tea polyphenols including (-) epigallocatechin-3-gallate (EGCG), theaflavin (TF-1), theaflavin-3-gal-late (TF-2) and theaflavin-3,3'-digallate (TF-3). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other tea polyphenols. TF-3 inhibited both IKK1 and IKK2 activity and prevented the degradation of IㆍBㆍand IㆍBㆍin activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 and other tea polyphenols could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. TF-3 and other tea polyphenols blocked phosphorylation of IB from the cytosolic fraction, inhibited NFB activity and inhibited increases in inducible nitric oxide synthase levels in activated macrophage. TF-3 and other tea polyphenols also inhibited strongly the activities of xanthine oxidase, cyclooxygenase, EGF-receptor tyrosine kinase and protein kinase C. These results suggest that TF-3 and other tea polyphenols may exert their cancer chemoprevention through suppressing tumor promotion and inflammation by blocking signal transduction. The mechanisms of this inhibition may be due to the blockade of the mitogenic and differentiating signals through modulating EGFR function, MAPK cascades, NFkB activation as wll as c-myc, c-jun and c-fos expression.

Anti-Cancer Effect of 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide in MCF-7 Human Breast Cancer

  • Min, Kyung-Nan;Joung, Ki-Eun;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.10.1-10.7
    • /
    • 2012
  • Objectives: In recent years, a number of structurally diverse Histone deacetylase (HDAC) inhibitors have been identified and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. This study aimed at investigating the antitumor activity of newly synthesized HDAC inhibitor, 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide (IN-2001) using human breast cancer cells. Methods: We have synthesized a new HDAC inhibitor, IN-2001, and cell proliferation inhibition assay with this chemical in estrogen receptor-positive human breast cancer MCF-7 cells. Cell cycle analysis on MCF-7 cells treated with IN-2001 was carried out by flow cytometry and gene expression was measured by RT-PCR. Results: In MCF-7 cells IN-2001 showed remarkable anti-proliferative effects in a dose- and time-dependent manner. In MCF-7 cells, IN-2001 showed a more potent growth inhibitory effect than that of suberoylanilide hydroxamic acid. These growth inhibitory effects were related to the cell cycle arrest and induction of apoptosis. IN-2001 showed accumulation of cells at $G_2$/M phase and of the sub-$G_1$ population in a time-dependent manner, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with HDAC inhibitor-mediated induction of CDK inhibitor expression. In MCF-7 cells, IN-2001 significantly increased $p21^{WAF1}$ expression. Conclusions: In summary, cyclin-dependent kinase (CDK) induced growth inhibition, possibly through modulation of cell cycle and apoptosis regulatory proteins, such as CDK inhibitors, and cyclins. Taken together, these results provide an insight into the utility of HDAC inhibitors as a novel chemotherapeutic regime for hormone-sensitive and insensitive breast cancer.

Effect and mechanism of chitosan-based nano-controlled release system on the promotion of cell cycle progression gene expression (키토산 기반 나노방출제어시스템의 세포주기진행 유전자 발현 증진 효과 및 기전)

  • Lee, Won Joong;Park, Kwang Man;Lee, sungbok Richard;Hwang, Yu Jeong;Lee, Suk Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.379-394
    • /
    • 2021
  • Purpose. In our previous studies, application of trichloroacetic acid (TCA) to gingival fibroblasts or to canine palatal soft tissue was verified to alter the expression of several genes responsible for cell cycle progression. In order to confirm this effect in a system allowing sequential release of TCA and epidermal growth factor (EGF), expression of various cell cycle genes following the application of the agents, using hydrophobically modified glycol chitosan (HGC)-based nano-controlled release system, was explored in this study. Materials and methods. HGC-based nano-controlled release system was developed followed by loading TCA and EGF. The groups were defined as the control (CON); TCA-loaded nano-controlled release system (EXP1); TCA- and EGF- individually loaded nano-controlled release system (EXP2). At 24- and 48 hr culture, expression of 37 cell cycle genes was analyzed in human gingival fibroblasts. Correlations and the influential genes were also analyzed. Results. Numerous genes such as cyclins (CCNDs), cell division cycles (CDCs), cyclin-dependent kinases (CDKs), E2F transcription factors (E2Fs), extracellular signal-regulated kinases (ERKs) and other cell cycle genes were significantly up-regulated in EXP1 and EXP2. Also, cell cycle arrest genes of E2F4, E2F5, and GADD45G were up-regulated but another cell cycle arrest gene SMAD4 was down-regulated. From the multiple regression analysis, CCNA2, CDK4, and ANAPC4 were determined as the most influential factors on the expression of ERK genes. Conclusion. Application of TCA and EGF, using the HGC-based nano-controlled sequential release system significantly up-regulated various cell cycle progression genes, leading to the possibility of regenerating oral soft tissue via application of the proposed system.

The TREK2 Channel Is Involved in the Proliferation of 253J Cell, a Human Bladder Carcinoma Cell

  • Park, Kyung-Sun;Han, Min Ho;Jang, Hee Kyung;Kim, Kyung-A;Cha, Eun-Jong;Kim, Wun-Jae;Choi, Yung Hyun;Kim, Yangmi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.511-516
    • /
    • 2013
  • Bladder cancer is the seventh most common cancer in men that smoke, and the incidence of disease increases with age. The mechanism of occurrence has not yet been established. Potassium channels have been linked with cell proliferation. Some two-pore domain $K^+$ channels (K2P), such as TASK3 and TREK1, have recently been shown to be overexpressed in cancer cells. Here we focused on the relationship between cell growth and the mechanosensitive K2P channel, TREK2, in the human bladder cancer cell line, 253J. We confirmed that TREK2 was expressed in bladder cancer cell lines by Western blot and quantitative real-time PCR. Using the patch-clamp technique, the mechanosensitive TREK2 channel was recorded in the presence of symmetrical 150 mM KCl solutions. In 253J cells, the TREK2 channel was activated by polyunsaturated fatty acids, intracellular acidosis at -60 mV and mechanical stretch at -40 mV or 40 mV. Furthermore, small interfering RNA (siRNA)-mediated TREK2 knockdown resulted in a slight depolarization from $-19.9mV{\pm}0.8$ (n=116) to $-8.5mV{\pm}1.4$ (n=74) and decreased proliferation of 253J cells, compared to negative control siRNA. 253J cells treated with TREK2 siRNA showed a significant increase in the expression of cell cycle boundary proteins p21 and p53 and also a remarkable decrease in protein expression of cyclins D1 and D3. Taken together, the TREK2 channel is present in bladder cancer cell lines and may, at least in part, contribute to cell cycle-dependent growth.

Regulation of Apoptosis and Cell Cycle in Irradiated Mouse Brain (마우스의 대뇌조직에서 방사선에 의한 아포토시스와 세포주기의 조절)

  • Oh, Won-Yong;Song, Mi-Hee;Chung, Eun-Ji;Seong, Jin-Sil;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.146-152
    • /
    • 2001
  • Purpose : To investigate the regulation of apoptosis and cell cycle in mouse brain irradiation. Materials and Methods : 8-week old male mice, C57B1/6J were given whole body $\gamma-radiation$ with a single dose of 25 Gy using Cobalt 60 irradiator. At different times 1, 2, 4, 8 and 24hr after irradiation, mice were killed and brain tissues were collected. Apoptotic cells were scored by TUNEL assay. Expression of p53, Bcl-2, and Bax and cell cycle regulating molecules; cyclins Bl, Dl, E and cdk2, cdk4, $p34^{cdc2}$ were analysed by Western blotting. Cell cycle was analysed by Flow cytometry. Results : The peak of radiation induced apoptosis is shown at 8 hour after radiation. With a single 25 Gy irradiation, the peak of apoptotic index in C57B1/6J is $24.0{\pm}0.25$ (p<0.05) at 8 hour after radiation. Radiation upregulated the expression of p53/tubulin, Bax/tubulin, and Bcl-2/tubulin with 1.3, 1.1 and 1.45 fold increase, respectively were shown at the peak level at 8 hour after radiation. The levels of cell cycle regulating molecules after radiation are not changed significantly except cyclin D1 with 1.3 fold increase. Fractions of Go-Gl, G2-M and S phase in the cell cycle does not specific changes by time. Conclusion : In mouse brain tissue, radiation induced apoptosis is particularly shown in a specific area, subependyma. These results and lack of radiation induced changes in cell cycle ofter better understanding of radiation response of noraml brain tissue.

  • PDF