• Title/Summary/Keyword: Cycling time

Search Result 285, Processing Time 0.033 seconds

Design Strategies to Enhance Resilience of Ecosystem Services in Urban Wetland - Using System Thinking - (생태계서비스 회복력 향상을 위한 도시 습지 설계 전략 - 시스템 사고를 활용하여 -)

  • You, Soo-jin;Ham, Eun-Kyung;Lee, Jung-a;Cho, Dong-Gil;Chon, Jin-hyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.4
    • /
    • pp.43-61
    • /
    • 2017
  • The wetlands are facing environmental changes such as desiccation that occurs with the passage of time and reduced ecosystem services from wetlands in the city. In order to maintain the ecosystem services provided by wetlands in urban areas, a system thinking about the trade-off phenomenon of ecosystem services occurring as the wetlands undergo environmental changes is needed. Therefore, the purpose of this study is to develop strategies for wetland design using system thinking approach to enhance the resilience of ecosystem services degraded by the desiccation of wetlands and other disturbances. The objectives of this study include the system boundary and variables. Second, analyzing the dynamics of wetland design strategy. Third, it analyzes the trade-off phenomenon of ecosystem services in terms of the hydrology, hydric soil, and plants strategies to mitigate these effects. Fourth, wetland basic design to improve the resilience of ecosystem services. A wetland in Abuk-Mountain Neighborhood Park, Miryang-si, Gyeongsangnam-do, has been selected as a case study. Causal loop diagrams(CLDs) are used to analyze feedback in the wetland regime. In summary, hydrology, hydric soil, and plants is suggested as system boundaries to design plan. Design strategies for the wetland focused on robustness, redundancy, rapidity, and resourcefulness as a result of CLD analysis are first proposed in order to effectively maintain the wetland regime over the long term. Secondly, in a section related to hydrology, the CLD results show the trade-offs between provisioning-cultural services and regulating services. In order to control these services, a "water cycling system" has been implemented due to its strength in terms of robustness. The CLDs for hydric soil showed the trade-offs between regulating services and supporting services. An "installation of storm drainage for maintaining water levels" was selected due to the strength offered in terms of redundancy and rapidity. The CLDs for plants showed the trade-offs between provisioning - cultural services and regulating services. In order to control the strategic points, the "planting of indigenous vegetation" was suggested given the strength in terms of redundancy. In this study, a wetland design method is proposed that can improve the resilience of wetland ecosystem services by analyzing the dynamics overtime. The results of this research can theoretically be applied to help restore ecosystem services in wetlands using ecological landscape design. In addition, this study will contribute to reducing maintenance costs by improving wetland resilience.

Effects of air-abrasion pressure on the resin bond strength to zirconia: a combined cyclic loading and thermocycling aging study

  • Al-Shehri, Eman Z.;Al-Zain, Afnan O.;Sabrah, Alaa H.;Al-Angari, Sarah S.;Dehailan, Laila Al;Eckert, George J.;Ozcan, Mutlu;Platt, Jeffrey A.;Bottino, Marco C.
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.3
    • /
    • pp.206-215
    • /
    • 2017
  • Objectives: To determine the combined effect of fatigue cyclic loading and thermocycling (CLTC) on the shear bond strength (SBS) of a resin cement to zirconia surfaces that were previously air-abraded with aluminum oxide ($Al_2O_3$) particles at different pressures. Materials and Methods: Seventy-two cuboid zirconia specimens were prepared and randomly assigned to 3 groups according to the air-abrasion pressures (1, 2, and 2.8 bar), and each group was further divided into 2 groups depending on aging parameters (n = 12). Panavia F 2.0 was placed on pre-conditioned zirconia surfaces, and SBS testing was performed either after 24 hours or 10,000 fatigue cycles (cyclic loading) and 5,000 thermocycles. Non-contact profilometry was used to measure surface roughness. Failure modes were evaluated under optical and scanning electron microscopy. The data were analyzed using 2-way analysis of variance and ${\chi}^2$ tests (${\alpha}=0.05$). Results: The 2.8 bar group showed significantly higher surface roughness compared to the 1 bar group (p < 0.05). The interaction between pressure and time/cycling was not significant on SBS, and pressure did not have a significant effect either. SBS was significantly higher (p = 0.006) for 24 hours storage compared to CLTC. The 2 bar-CLTC group presented significantly higher percentage of pre-test failure during fatigue compared to the other groups. Mixed-failure mode was more frequent than adhesive failure. Conclusions: CLTC significantly decreased the SBS values regardless of the air-abrasion pressure used.

Temporal and Spatial Variability of Nutrients Variation in Bottom Layer of Jinhae Bay (진해만과 주변해역 저층 영양염의 시·공간적 변동 특성)

  • Choi, Tae-Jun;Kwon, Jung-No;Lim, Jae-Hyun;Kim, Seul-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.627-639
    • /
    • 2014
  • In respect of the nutrients cycling in coastal environment, regeneration in bottom layer is one of major source of nutrients. We analyzed the bottom water quality at the 14 stations during 9 years from 2004 to 2012 to investigate the characteristics of nutrients at bottom layer in Jinhae Bay. Concentrations of DIN, DIP and DSi showed the large seasonal variation and were higher in summer. Especially, average concentrations of these nutrients were two times higher in hypoxic season than in normoxic season. In summer, high concentrations of DIN, DIP and DSi caused by regeneration were common feature, but spatial distribution of DSi differ from that of DIN and DIP. DIN and DIP were higher in Masan Bay, while DSi was higher in Masan Bay as well as in center of Jinhae Bay. In comparison with DIN and DIP, DSi was significantly affected by nutrients regeneration at bottom layer in whole season. According to time series analysis, DIN concentration was decreased from approximately $14{\mu}M$ to $6{\mu}M$. This result induce that Si:N ratio at bottom layer in Jinhae Bay changed from approximately 1 to 3.

Performance Evaluation of Aqueous Organic Redox Flow Battery Using Methylene Blue and Vanadium Redox Couple (메틸렌블루와 바나듐을 활물질로 활용한 수계 유기 레독스 흐름 전지의 성능 평가)

  • Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.890-894
    • /
    • 2018
  • In this study, methylene blue which is one of dye materials was introduced as active material for aqueous redox flow battery. The redox potential of methylene blue was shifted to negative direction as pH increased. The full-cell performance was evaluated by using methylene blue as the negative active material and vanadium as the positive active material with acid supporting electrolytes. The cell voltage of methylene $blue/V^{4+}$ is very low (0.45 V). In addition, the maximum solubility of methylene blue in water is only 0.12 M. Therefore, the cell test was performed with very low concentration (0.0015 M methylene blue, $0.15M\;V^{4+}$) at first time. Cut-off voltage range was 0 to 0.8 V and $1mA{\cdot}cm^{-2}$ current density was adopted during cycling. As a result, current efficiency (CE) was 99.67%, voltage efficiency (VE), 88.83% and energy efficiency (EE) was 85.87% and discharge capacity was ($0.0500Ah{\cdot}L^{-1}$) at 4 cycle. In addition, the cell test was performed with increased concentration (0.1 M methylene blue, $0.15M\;V^{4+}$) with $10mA{\cdot}cm^{-2}$ current density, leading to higher discharge capacity ($3.8122Ah{\cdot}L^{-1}$) with similar efficiency (CE=99%, VE=85%, EE=85% at 4 cycle).

Thermal Energy Capacity of Concrete Blocks Subjected to High-Temperature Thermal Cycling (열사이클을 적용한 고온 조건 콘크리트 블록의 열용량 특성)

  • Yang, In-Hwan;Park, Ji-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.571-580
    • /
    • 2020
  • In this study, an experimental study on storage media for thermal energy storage system was conducted. For thermal energy storage medium, concrete has excellent thermal and mechanical properties and also has various advantages due to its low cost. In addition, the ultra-high strength concrete reinforced by steel fibers exhibits excellent durability against exposure to high temperatures due to its high toughness and high strength characteristics. Moreover, the high thermal conductivity of steel fibers has an advantageous effect on heat storage and heat dissipation. Therefore, to investigate the temperature distribution characteristics of ultra-high-strength concrete, concrete blocks were fabricated and a heating test was performed by applying high-temperature thermal cycles. The heat transfer pipe was buried in the center of the concrete block for heat transfer by heat fluid flow. In order to explore the temperature distribution characteristics according to different shapes of the heat transfer pipe, a round pipe and a longitudinal fin pipe were used. The temperature distribution at the differnent thermal cycles were analyzed, and the thermal energy and the cumulated thermal energy over time were calculated and analyzed for comparison based on test results.

Introduction of a New Method for Total Organic Carbon and Total Nitrogen Stable Isotope Analysis of Dissolved Organic Matter in Aquatic Environments (수환경 내 용존성 유기물질의 총 유기탄소 및 총 질소 안정동위원소 신규 분석법 소개)

  • Si-yeong Park;Heeju Choi;Seoyeon Hong;Bo Ra Lim;Seoyeong Choi;Eun-Mi Kim;Yujeong Huh;Soohyung Lee;Min-Seob Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.339-347
    • /
    • 2023
  • Dissolved organic matter (DOM) is a key component in the biogeochemical cycling in freshwater ecosystem. However, it has been rarely explored, particularly complex river watershed dominated by natural and anthropogenic sources, such as various effluent facility and livestock. The current research developed a new analytical method for TOC/TN (Total Organic Carbon/Total Nitrogen) stable isotope ratio, and distinguish DOM source using stable isotope value (δ13C-DOC) and spectroscopic indices (fluorescence index [FI] and biological index [BIX]). The TOC/TN-IR/MS analytical system was optimized and precision and accuracy were secured using two international standards (IAEA-600 Caffein, IAEA-CH-6 Sucrose). As a result of controlling the instrumental conditions to enable TOC stable isotope analysis even in low-concentration environmental samples (<1 mgC L-1), the minimum detection limit was improved. The 12 potential DOM source were collected from watershed, which includes top-soils, groundwater, plant group (fallen leaves, riparian plants, suspended algae) and effluent group (pig and cow livestock, agricultural land, urban, industry facility, swine facility and wastewater treatment facilities). As a result of comparing characteristics between 12 sources using spectroscopic indices and δ13C-DOC values, it were divided into four groups according to their characteristics as a respective DOM sources. The current study established the TOC/TN stable isotope analyses system for the first time in Korea, and found that spectroscopic indices and δ13C-DOC are very useful tool to trace the origin of organic matter in the aquatic environments through library database.

A Study on the Thermal Properties of Binary Eutectic Mixed PCM Using Polyethylene Glycol and 1,4-Butanediol (Polyethylene glycol과 1,4-Butanediol을 활용한 이원 공융혼합 PCM의 열적 특성에 관한 연구)

  • Jooyoung Park;Kitae Park;Jongchul Seo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.2
    • /
    • pp.101-106
    • /
    • 2024
  • Current cold chain logistics relying on organic or eutectic materials within the 2~8℃ range as secondary fluids often face limitations in heat storage capacity, necessitating high energy consumption and large volume capacity. An effective approach to address this challenge is by incorporating polymers to enhance the heat storage capacity of eutectic materials. In this study, we investigated the impact of polyethylene glycols (PEGs) on phase change materials using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimeter (DSC), analyses of endothermic and exothermic phase change processes, and an accelerated thermal cycling test. Our findings indicate that the introduction of PEGs into the phase change materials can lead to improvements in latent heat, thermal conductivity, and 2~8℃ retention time. This enhancement is attributed to the high latent heat and thermal conductivity of the polymer, along with its ability to inhibit crystal formation in the eutectic mixture.

Feasibility Test on Automatic Control of Soil Water Potential Using a Portable Irrigation Controller with an Electrical Resistance-based Watermark Sensor (전기저항식 워터마크센서기반 소형 관수장치의 토양 수분퍼텐셜 자동제어 효용성 평가)

  • Kim, Hak-Jin;Roh, Mi-Young;Lee, Dong-Hoon;Jeon, Sang-Ho;Hur, Seung-Oh;Choi, Jin-Yong;Chung, Sun-Ok;Rhee, Joong-Yong
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • Maintenance of adequate soil water potential during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement within and below the rooting zone can facilitate optimal irrigation scheduling aimed at minimizing the adverse effects of water stress on crop growth and development and the leaching of water below the root zone which can have adverse environmental effects. The objective of this study was to evaluate the feasibility of using a portable irrigation controller with an Watermark sensor for the cultivation of drip-irrigated vegetable crops in a greenhouse. The control capability of the irrigation controller for a soil water potential of -20 kPa was evaluated under summer conditions by cultivating 45-day-old tomato plants grown in three differently textured soils (sandy loam, loam, and loamy sands). Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30 cm depths. Even though a repeatable cycling of soil water potential occurred for the potential treatment, the lower limit of the Watermark (about 0 kPa) obtained in this study presented a limitation of using the Watermark sensor for optimal irrigation of tomato plants where -20 kPa was used as a point for triggering irrigations. This problem might be related to the slow response time and inadequate soil-sensor interface of the Watermark sensor as compared to a porous and ceramic cup-based tensiometer with a sensitive pressure transducer. In addition, the irrigation time of 50 to 60 min at each of the irrigation operation gave a rapid drop of the potential to zero, resulting in over irrigation of tomatoes. There were differences in water content among the three different soil types under the variable rate irrigation, showing a range of water contents of 16 to 24%, 17 to 28%, and 24 to 32% for loamy sand, sandy loam, and loam soils, respectively. The greatest rate increase in water content was observed in the top of 10 cm depth of sandy loam soil within almost 60 min from the start of irrigation.

β-elemene Induces Caspase-dependent Apoptosis in Human Glioma Cells in vitro through the Upregulation of Bax and Fas/FasL and Downregulation of Bcl-2

  • Li, Chen-Long;Chang, Liang;Guo, Lin;Zhao, Dan;Liu, Hui-Bin;Wang, Qiu-Shi;Zhang, Ping;Du, Wen-Zhong;Liu, Xing;Zhang, Hai-Tao;Liu, Yang;Zhang, Yao;Xie, Jing-Hong;Ming, Jian-Guang;Cui, Yu-Qiong;Sun, Ying;Zhang, Zhi-Ren;Jiang, Chuan-Lu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10407-10412
    • /
    • 2015
  • Background: ${\beta}$-elemene, extracted from herb medicine Curcuma wenyujin has potent anti-tumor effects in various cancer cell lines. However, the activity of ${\beta}$-elemene against glioma cells remains unclear. In the present study, we assessed effects of ${\beta}$-elemene on human glioma cells and explored the underlying mechanism. Materials and Methods: Human glioma U87 cells were used. Cell proliferation was determined with MTT assay and colony formation assay to detect the effect of ${\beta}$-elemene at different doses and times. Fluorescence microscopy was used to observe cell apoptosis with Hoechst 33258 staining and change of glioma apoptosis and cell cycling were analyzed by flow cytometry. Real-time quantitative PCR and Western-blotting assay were performed to investigated the influence of ${\beta}$-elemene on expression levels of Fas/FasL, caspase-3, Bcl-2 and Bax. The experiment was divided into two groups: the blank control group and ${\beta}$-elemne treatment group. Results: With increase in the concentration of ${\beta}$-elemene, cytotoxic effects were enhanced in the glioma cell line and the concentration of inhibited cell viability ($IC_{50}$) was $48.5{\mu}g/mL$ for 24h. ${\beta}$-elemene could induce cell cycle arrest in the G0/G1 phase. With Hoechst 33258 staining, apoptotic nuclear morphological changes were observed. Activation of caspase-3,-8 and -9 was increased and the pro-apoptotic factors Fas/FasL and Bax were upregulated, while the anti-apoptotic Bcl-2 was downregulated after treatment with ${\beta}$-elemene at both mRNA and protein levels. Furthermore, proliferation and colony formation by U87 cells were inhibited by ${\beta}$-elemene in a time and does-dependent manner. Conclusions: Our results indicate that ${\beta}$-elemene inhibits growth and induces apoptosis of human glioma cells in vitro. The induction of apoptosis appears to be related with the upregulation of Fas/FasL and Bax, activation of caspase-3,-8 and -9 and downregulation of Bcl-2, which then trigger major apoptotic cascades.

Integrated Rotary Genetic Analysis Microsystem for Influenza A Virus Detection

  • Jung, Jae Hwan;Park, Byung Hyun;Choi, Seok Jin;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.88-89
    • /
    • 2013
  • A variety of influenza A viruses from animal hosts are continuously prevalent throughout the world which cause human epidemics resulting millions of human infections and enormous industrial and economic damages. Thus, early diagnosis of such pathogen is of paramount importance for biomedical examination and public healthcare screening. To approach this issue, here we propose a fully integrated Rotary genetic analysis system, called Rotary Genetic Analyzer, for on-site detection of influenza A viruses with high speed. The Rotary Genetic Analyzer is made up of four parts including a disposable microchip, a servo motor for precise and high rate spinning of the chip, thermal blocks for temperature control, and a miniaturized optical fluorescence detector as shown Fig. 1. A thermal block made from duralumin is integrated with a film heater at the bottom and a resistance temperature detector (RTD) in the middle. For the efficient performance of RT-PCR, three thermal blocks are placed on the Rotary stage and the temperature of each block is corresponded to the thermal cycling, namely $95^{\circ}C$ (denature), $58^{\circ}C$ (annealing), and $72^{\circ}C$ (extension). Rotary RT-PCR was performed to amplify the target gene which was monitored by an optical fluorescent detector above the extension block. A disposable microdevice (10 cm diameter) consists of a solid-phase extraction based sample pretreatment unit, bead chamber, and 4 ${\mu}L$ of the PCR chamber as shown Fig. 2. The microchip is fabricated using a patterned polycarbonate (PC) sheet with 1 mm thickness and a PC film with 130 ${\mu}m$ thickness, which layers are thermally bonded at $138^{\circ}C$ using acetone vapour. Silicatreated microglass beads with 150~212 ${\mu}L$ diameter are introduced into the sample pretreatment chambers and held in place by weir structure for construction of solid-phase extraction system. Fig. 3 shows strobed images of sequential loading of three samples. Three samples were loaded into the reservoir simultaneously (Fig. 3A), then the influenza A H3N2 viral RNA sample was loaded at 5000 RPM for 10 sec (Fig. 3B). Washing buffer was followed at 5000 RPM for 5 min (Fig. 3C), and angular frequency was decreased to 100 RPM for siphon priming of PCR cocktail to the channel as shown in Figure 3D. Finally the PCR cocktail was loaded to the bead chamber at 2000 RPM for 10 sec, and then RPM was increased up to 5000 RPM for 1 min to obtain the as much as PCR cocktail containing the RNA template (Fig. 3E). In this system, the wastes from RNA samples and washing buffer were transported to the waste chamber, which is fully filled to the chamber with precise optimization. Then, the PCR cocktail was able to transport to the PCR chamber. Fig. 3F shows the final image of the sample pretreatment. PCR cocktail containing RNA template is successfully isolated from waste. To detect the influenza A H3N2 virus, the purified RNA with PCR cocktail in the PCR chamber was amplified by using performed the RNA capture on the proposed microdevice. The fluorescence images were described in Figure 4A at the 0, 40 cycles. The fluorescence signal (40 cycle) was drastically increased confirming the influenza A H3N2 virus. The real-time profiles were successfully obtained using the optical fluorescence detector as shown in Figure 4B. The Rotary PCR and off-chip PCR were compared with same amount of influenza A H3N2 virus. The Ct value of Rotary PCR was smaller than the off-chip PCR without contamination. The whole process of the sample pretreatment and RT-PCR could be accomplished in 30 min on the fully integrated Rotary Genetic Analyzer system. We have demonstrated a fully integrated and portable Rotary Genetic Analyzer for detection of the gene expression of influenza A virus, which has 'Sample-in-answer-out' capability including sample pretreatment, rotary amplification, and optical detection. Target gene amplification was real-time monitored using the integrated Rotary Genetic Analyzer system.

  • PDF