• Title/Summary/Keyword: Cyclin E-Cdk2

Search Result 84, Processing Time 0.021 seconds

Differential Gene Expression after Adenovirus-Mediated p16 Gene Transfer in Human Non-Small Cell Lung Cancer Cells (폐암세포주에서 아데노바이러스 매개 p16 유전자 전달로 인한 유전자 발현의 변화)

  • 박미선;김옥희;박현신;지승완;엄미옥;염태경;강호일
    • Toxicological Research
    • /
    • v.20 no.2
    • /
    • pp.109-116
    • /
    • 2004
  • For the safety evaluation of adenovirus-mediated gene transfer, we investigated differential gene expressions after transfecting adenoviral vector containing p16 tumor suppressor gene (Ad5CMV-p16) into human non-small cell lung cancer cells. In the previous study, we showed adenovirus-mediated $p16^{INK4a}$ gene transfer resulted in significant inhibition of cancer cell growth. We investigated gene expression changes after transfecting Ad5CMV-p16, Ad5CMV (null type, a mock vector) into A549 cells by using cDNA chip and oligonucleotide microarray chip (1200 genes) which carries genes related with signal transduction pathways, cell cycle regulations, oncogenes and tumor suppressor genes. We found that $p16^{INK4a}$ gene transfer down regulated 5 genes (cdc2, cyclin D3, cyclin B, cyclin E, cdk2) among 26 genes involved in cell cycle regulations. Compared with serum-free medium treated cells, Ad5CMV-p16 changed 27 gene expressions, two fold or more on oligonucleotide chip. In addition, Ad5CMV-p16 did not seem to increase the tumorigenicity-related gene expression in A549 cells. Further studies will be needed to investigate the effect of Ad5CMV-p16 on normal human cells and tissues for safety evaluation.

Murrayafoline A Induces a G0/G1-Phase Arrest in Platelet-Derived Growth Factor-Stimulated Vascular Smooth Muscle Cells

  • Han, Joo-Hui;Kim, Yohan;Jung, Sang-Hyuk;Lee, Jung-Jin;Park, Hyun-Soo;Song, Gyu-Yong;Nguyen, Manh Cuong;Kim, Young Ho;Myung, Chang-Seon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.421-426
    • /
    • 2015
  • The increased potential for vascular smooth muscle cell (VSMC) growth is a key abnormality in the development of atherosclerosis and post-angioplasty restenosis. Abnormally high activity of platelet-derived growth factor (PDGF) is believed to play a central role in the etiology of these pathophysiological situations. Here, we investigated the anti-proliferative effects and possible mechanism(s) of murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa Guillamin (Rutaceae), on PDGF-BB-stimulated VSMCs. Murrayafoline A inhibited the PDGF-BB-stimulated proliferation of VSMCs in a concentration-dependent manner, as measured using a non-radioactive colorimetric WST-1 assay and direct cell counting. Furthermore, murrayafoline A suppressed the PDGF-BB-stimulated progression through $G_0/G_1$ to S phase of the cell cycle, as measured by [$^3H$]-thymidine incorporation assay and cell cycle progression analysis. This anti-proliferative action of murrayafoline A, arresting cell cycle progression at $G_0/G_1$ phase in PDGF-BB-stimulated VSMCs, was mediated via down-regulation of the expression of cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, CDK4, and proliferating cell nuclear antigen (PCNA), and the phosphorylation of retinoblastoma protein (pRb). These results indicate that murrayafoline A may be useful in preventing the progression of vascular complications such as restenosis after percutaneous transluminal coronary angioplasty and atherosclerosis.

Growth Inhibitory Activity of Honokiol through Cell-cycle Arrest, Apoptosis and Suppression of Akt/mTOR Signaling in Human Hepatocellular Carcinoma Cells

  • Hong, Ji-Young;Park, Hyen Joo;Bae, KiHwan;Kang, Sam Sik;Lee, Sang Kook
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.155-159
    • /
    • 2013
  • Honokiol, a naturally occurring neolignan mainly found in Magnolia species, has exhibited a potential anti-proliferative activity in human cancer cells. However, the growth inhibitory activity against hepatocellular carcinoma cells and the underlying molecular mechanisms has been poorly determined. The present study was designed to examine the anti-proliferative effect of honokiol in SK-HEP-1 human hepatocellular cancer cells. Honokiol exerted anti-proliferative activity with cell-cycle arrest at the G0/G1 phase and sequential induction of apoptotic cell death. The cell-cycle arrest was well correlated with the down-regulation of checkpoint proteins including cyclin D1, cyclin A, cyclin E, CDK4, PCNA, retinoblastoma protein (Rb), and c-Myc. The increase of sub-G1 peak by the higher concentration of honokiol ($75{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by decreased expression of Bcl-2, Bid, and caspase-9. Hohokiol was also found to attenuate the activation of signaling proteins in the Akt/mTOR and ERK pathways. These findings suggest that the anti-proliferative effect of honokiol was associated in part with the induction of cell-cycle arrest, apoptosis, and dow-nregulation of Akt/mTOR signaling pathways in human hepatocellular cancer cells.

Molecular Mechanisms of Cell Cycle Arrest and Apoptosis by Dideoxypetrosynol A, a Polyacetylene from the Sponge Petrosia sp., in Human Monocytic Leukemia Cells

  • Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.243-251
    • /
    • 2006
  • Dideoxypetrosynol A, a polyacetylene from the marine sponge Petrosia sp., is known to exhibit significant selective cytotoxic activity against a small panel of human tumor cell lines, however, the mechanisms of which are poorly understood. In the present study, it was investigated the further possible mechanisms by which dideoxytetrosynol A exerts its anti-proliferative action in cultured human leukemia cell line U937. We observed that the proliferation-inhibitory effect of dideoxypetrosynol A was due to the induction of G1 arrest of the cell cycle and apoptosis, which effects were associated with up-regulation of cyclin D1 and down-regulation of cyclin E without any change in cyclin-dependent-kinases (Cdks) expression. Dideoxypetrosynol A markedly induced the levels of Cdk inhibitor p16/INK4a expression. Furthermore, down-regulation of phosphorylation of retinoblastoma protein (pRB) by this compound was associated with enhanced binding of pRB and the transcription factor E2F-1. The increase in apoptosis was associated with a dose-dependent up-regulation in pro-apoptotic Bax expression and activation of caspase-3 and caspase-9. Dideoxytetrosynol A decreased the levels of cyclooxygenase (COX)-2 mRNA and protein expression without significant changes in the levels of COX-1, which was correlated with a decrease in prostaglandin E2 (PGE2) synthesis. Furthermore, dideoxytetrosynol A treatment markedly inhibited the activity of telomerase, and the expression of human telomerase reverse transcriptase (hTERT), a main determinant of the telomerase enzymatic activity, was progressively down-regulated by dideoxytetrosynol A treatment in a dose-dependent fashion. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of dideoxytetrosynol A.

  • PDF

Induction of Selective Cell Death of Oral Squamous Carcinoma Cells by Integrin α2 Antibody and EGFR Antibody (인테그린 α2와 상피성장인자수용체 차단항체의 저해작용을 통한 구강편평상피암 세포의 선택적 제거)

  • Choi, Yeon-Sik;Kim, Gyoo-Cheon;Yoon, Sik;Hwang, Dae-Seok;Kim, Cheol-Hun;Jeon, Young-Chan;Byun, June-Ho;Shin, Sang-Hun;Kim, Uk-Kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.3
    • /
    • pp.143-154
    • /
    • 2013
  • Purpose: This study was to find efficacy of integrin alpha2 (${\alpha}_2$) and epidermal growth factor receptor (EGFR) as tumor marker of oral squamous cell carcinoma (SCC) and clarify the selective cell death effect of anti-integrin ${\alpha}_2$ and anti-EGFR on SCC cells, additionally testify conjugated gold nanoparticles (GNP) with air plasma for selective cell death of oral SCC. Methods: Expression of integrin ${\alpha}_2$, EGFR on human SCC cells (SCC25) were examined by western blot. SCC25 cells were treated with anti-integrin ${\alpha}_2$, anti-EGFR and analysed by Hemacolor staining, immunoflorescence staining, FACS flow cytometry. Conjugated GNP with integrin ${\alpha}_2$, EGFR antibody were treated by air plasma on SCC cells. Results: Integrin ${\alpha}_2$ and EGFR were over-expressed on SCC25 cells than normal lung WI-38 cells. The cell viability rate of SCC25 cells treated with anti-integrin ${\alpha}_2$, anti-EGFR was lower than WI-38 cells. The concentration changes of nucleus, releasing cytochrome c and apoptosis inducing factor (AIF) from mitochondria to cytosol were observed. The changes of proteins related with apoptosis were observed. Increase of bax, bcl-xL, activation of caspase-3, -7, -9, and fragmentation of PARP, DFF45 and decrease of lamin A/C in SCC25 cells were observed. In FACS, increase of sub-$G_1$ and S phase was observed. Cell cycle related proteins, Such as cyclin D1, cyclin dependent kinase (CDK) 4, cyclin A, cyclin E, CDK 2, p27 were decreased. After SCC25 cells treated with conjugatged GNP-Integrin ${\alpha}_2$, GNP-EGFR, additionally air plasma, the cell death rate was significantly increased. Conclusion: Integrin ${\alpha}_2$, EGFR were over-expressed in oral SCC cells. Anti-integrin ${\alpha}_2$, anti-EGFR in SCC25 cells induced apoptosis selectively. When GNP-anti integrin ${\alpha}_2$, GNP-anti EGFR were treated with air plasma on SCC25 cells, cancer cells were died more selectively. GNP-anti integrin ${\alpha}_2$, GNP-anti EGFR with air plasma could be treatment choice of oral SCC.

Suppression of Human Prostate Cancer Cell Growth by β-Lapachone via Down-regulation of pRB Phosphorylation and Induction of Cdk Inhibitor p21WAF1/CIP1

  • Choi, Yung-Hyun;Kang, Ho-Sung;Yoo, Mi-Ae
    • BMB Reports
    • /
    • v.36 no.2
    • /
    • pp.223-229
    • /
    • 2003
  • The product of a tree (Tabebuia avellanedae) from South America, $\beta$-lapachone, is known to exhibit various pharmacological properties, the mechanisms of which are poorly understood. The aim of the present study was to further elucidate the possible mechanisms by which $\beta$-lapachone exerts its anti-proliferative action in cultured human prostate cancer cells. We observed that the proliferation-inhibitory effect of $\beta$-lapachone was due to the induction of apoptosis, which was confirmed by observing the morphological changes and cleavage of the poly(ADP-ribose) polymerase protein. A DNA flow cytometric analysis also revealed that $\beta$-lapachone arrested the cell cycle progression at the G1 phase. The effects were associated with the down-regulation of the phosphorylation of the retinoblastoma protein (pRB) as well as the enhanced binding of pRB and the transcription factor E2F-1. Also, $\beta$-lapachone suppressed the cyclindependent kinases (Cdks) and cyclin E-associated kinase activity without changing their expressions. Furthermore, this compound induced the levels of the Cdk inhibitor $p21^{WAF1/CIP1}$ expression in a p53-independent manner, and the p21 proteins that were induced by $\beta$-lapachone were associated with Cdk2. $\beta$-lapachone also activated the reporter construct of a p21 promoter. Overall, our results demonstrate a combined mechanism that involves the inhibition of pRB phosphorylation and induction of p21 as targets for $\beta$-lapachone. This may explain some of its anticancer effects.

Amygdalin Modulates Cell Cycle Regulator Genes in Human Chronic Myeloid Leukemia Cells

  • Park, Hae-Jeong;Baik, Haing-Woon;Lee, Seong-Kyu;Yoon, Seo-Hyun;Zheng, Long-Tai;Yim, Sung-Vin;Hong, Seon-Pyo;Chung, Joo-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.159-165
    • /
    • 2006
  • To determine the anticancer effect of D-amygdalin (D-mandelinitrole-${\beta}$-D-gentiobioside) in human chronic myeloid leukemia cells K562, we profiled the gene expression between amygdalin treatment and control groups. Through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of D-amygdalin was $57.79{\pm}1.83%$ at the concentration of 5 mg/mL for 24 h. We performed cDNA microarray analysis and compared the gene expression profiles between D-amygdalin (5 mg/mL, 24 h) treatment and control groups. Among the genes changed by D-amygdalin, we paid attention to cell cycle-related genes, and particularly cell cycle regulator genes; because arrest of cell cycle processing was ideal tactic in remedy for cancer. In our data, expressions of cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B), ataxia telangiectasia mutated (includes complementation groups A, C, and D) (ATM), cyclin-dependent kinase inhibitor 1C (p57, Kip2) (CDKN1C), and CHK1 checkpoint homolog (CHEK1, formally known as CHK1) were increased, while expressions of cyclin-dependent kinase 2 (CDK2), cell division cycle 25A (CDC25A), and cyclin E1 (CCNE1) were decreased. The pattern of these gene expressions were confirmed through RT-PCR. Our results showed that D-amygdalin might control cell cycle regulator genes and arrest S phase of cell cycle in K562 cells as the useful anticancer drug.

Cell Cycle Arrest by Treatment of D-Ala2-Leu5-enkephalin in Human Leukemia Cancer U937 Cell. (인체혈구암세포 U937의 D-Ala2-Leu5-enkephalin처리에 의한 세포 주기 억제 효과)

  • Lee, Jun-Hyuk;Choi, Woo-Young;Choi, Yung-Hyun;Choi, Byung-Tae
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.620-624
    • /
    • 2009
  • D-Ala2-Leu5-enkephalin (DADLE), a hibernation inducer, can induce hibernation-like state in vivo and in vitro. We treated U937 human leukemia cancer cells with DADLE and investigated its possible effect on transcription and proliferation. Treatment of U937 cells with DADLE resulted in growth inhibition and induction of apoptotic cell death on high-dose as measured by MTT assay and DNA flow cytometer analysis. Bcl-XL, c-IAP-2 and survivin genes especially showed decreases in mRNA levels. DADLE treatment also inhibited the levels of cyclooxygenase (COX)-2 mRNA without alteration of COX-1 expression. DNA flow cytometer analysis revealed that DADLE caused arrest of the cell cycle on low-dose, which was associated with a down-regulation of cyclin E at the transcriptional level. DADLE treatment induced a marked down-regulation of cyclin-dependent kinase (Cdk)-2, -4 and -6. In addition, treatment with DADLE decreased telomere associated genes such as, c-myc and TERT, and increased TEP-1 in U937 cells. These results suggest that DADLE can be an inhibition agent in the cell cycle of the human leukemia cancer U937 cell.

Houttuynia cordata Thunberg exhibits anti-tumorigenic activity in human gastric cancer cells

  • Hong, Se Chul;Eo, Hyun-Ji;Song, Hoon-Min;Woo, So-Hee;Kim, Mi-Kyeong;Lee, Jin-Wook;Seo, Jeong-Min;Park, Su-Bin;Eom, Jung-Hye;Koo, JinSuk;Jeong, JinBoo
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.155-160
    • /
    • 2013
  • Objectives : Gastric cancer is a leading cause of cancer-related deaths, worldwide. Houttuynia cordata Thunberg (H. cordata) has been used as a medicinal plants and it has an anti-cancer activity in human colorectal cancer and leukemic cancer. However, the potential anti-cancer activity and mechanisms of H. cordata for human gastric cancer cells have not been tested so far. Thus, this study examined the biological effects of H. cordata on the human gastric cancer cell line SNU-1 and AGS. Methods : Inhibition of cell proliferation and cell cycle by H. cordata was carried out by MTT assay and Muse cell cycle analysis and the expressions of protein associated with apoptosis and cell cycle regulation were investigated with Western blot analysis. Results : In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by H. cordata in a time and dose dependent manner, Inhibition of cell proliferation by H. cordata was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bax to Bcl-2 by H. cordata. Also, H. cordata regulated the expression of cell cycle regulatory proteins such as pRb, cyclin D1, cyclin E, CDK4, CDK2, p21 and p15. Conclusion : The antiproliferative effect of H. cordata on SNU-1 and AGS gastric cancer cells revealed in this study suggests that H. cordata has intriguing potential as a chemopreventive or chemotherapeutic agent.

Induction of Cdk inhibitor p27 and Inhibition of pRB Phosphorylation by Insamsapye-tang Treatment in Human Lung Cancer A549 Cells (인체 폐암세포에서 인삼사폐탕에 의한 Cdk inhibitor p27의 발현 증가 및 pRB의 인산화 억제)

  • Lee Min Woo;Seo Chang Hun;Park Cheol;Lee Won Ho;Choi Yung Hyun;Park Dong Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.213-219
    • /
    • 2003
  • We investigated the effects of Insamsapye-tang (ISSPT) water extract on the cell proliferation of human lung carcinoma A549 cells. ISSPT treatment resulted in the inhibition of cell proliferation in a concentration-dependent manner. This anti-proliferative effect of A549 cells by ISSSPT treatment was associated with morphological changes such as membrane shrinking and cell rounding up. DNA flow cytometric histograms showed that population of G1 phase of the cell cycle was increased by ISSPT treatment in a concentration-dependent manner. ISSPT treatment induced the levels of tumor suppressor p53 protein and cyclin-dependent kinase (Cdk) inhibitor p27 without significant alteration of cyclins and Cdks expression. In addition, ISSPT treatment resulted in down-regulation of phosphorylated retinoblastoma protein (pRB). However, the levels of p130, the pRB family protein, and transcription factors. E2F-1 and E2F-4. were remained unchanged. The present results indicated that ISSPT-induced inhibition of lung cancer cell proliferation is associated with the blockage of G1/S progression and the induction of apoptosis, and we suggest that ISSPT will be an effective therapeutic agent on human lung cancer.