• Title/Summary/Keyword: Cyclin E

Search Result 183, Processing Time 0.036 seconds

Suppression of Prostaglandin E2-Mediated Cell Proliferation and Signal Transduction by Resveratrol in Human Colon Cancer Cells

  • Song, Su-Hyun;Min, Hye-Young;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.402-410
    • /
    • 2010
  • Although the overproduction of prostaglandin $E_2$ ($PGE_2$) in intestinal epithelial cells has been considered to be highly correlated with the colorectal carcinogenesis, the precise mechanism of action remains poorly elucidated. Accumulating evidence suggests that the PGE receptor (EP)-mediated signal transduction pathway might play an important role in this process. In the present study, we investigated the mechanism of action underlying $PGE_2$-mediated cell proliferation and the effect of resveratrol on the proliferation of human colon cancer cells in terms of the modulating $PGE_2$-mediated signaling pathway. $PGE_2$ stimulated the proliferation of several human colon cancer cells and activated growth-stimulatory signal transduction, including Akt and ERK. $PGE_2$ also increased the phosphorylation of GSK-$3{\beta}$, the translocation of ${\beta}$-catenin into the nucleus, and the expressions of c-myc and cyclin D1. Resveratrol, a cancer chemopreventive phytochemical, however, inhibited $PGE_2$-induced growth stimulation and also suppressed $PGE_2$-mediated signal transduction, as well as ${\beta}$-catenin/T cell factor-mediated transcription in human colon cancer cells. These findings present an additional mechanism through which resveratrol affects the regulation of human colon cancer cell growth.

The Hair Growth Effects of Wheat Bran (밀기울의 모발 성장 효과)

  • Kang, Jung-Il;Moon, Jungsun;Kim, Eun-Ji;Lee, Young-Ki;Koh, Young-Sang;Yoo, Eun-Sook;Kang, Hee-Kyoung;Yim, Dongsool
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.4
    • /
    • pp.384-390
    • /
    • 2013
  • This study was conducted to evaluate the effect of wheat bran on the promotion of hair growth. When rat vibrissa follicles were treated with n-hexane fraction of wheat bran, the hair-fiber lengths of the vibrissa follicles significantly increased. Moreover, n-hexane fraction of wheat bran was found to significantly induce the telogen-anagen transition in C57BL/6 mice. The fraction increased the proliferation of immortalized vibrissa dermal papilla cells (DPCs) in a dose dependent manner. To elucidate the molecular mechanisms in relation to proliferation of DPCs by the fraction of wheat bran, we examined the expression of cell cycle proteins and wnt/${\beta}$-catenin signaling components. Western blot analysis revealed that the proliferation of DPC by n-hexane fraction of wheat bran was accompanied by increased the level of cyclin D1, cyclin E, phospho-CDK2 and phospho-pRB. In addition, the fraction of wheat bran increased the level of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-GSK$3{\beta}$. These results suggest that the hair growing potential of wheat bran mediated by proliferation of DPCs via the regulation of cell cycle proteins and Wnt/${\beta}$-catenin signaling.

Inhibition of Cellular Proliferation by p53 dependent Apoptosis and G2M Cell Cycle Arrest of Saussurea lappa CLARKE in AGS Gastric Cancer Cell Lines

  • Jeong Han Su;Kim Dong Jo;Heo Geum Jeong;Nam Chang Gyu;Go Seong Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1186-1191
    • /
    • 2004
  • The root of Saussurea lappa includes sesquiterpene lactones such as costunolide and dehydrocostus lactone, and has been shown to be anti-tumorigenic with being used in traditional medicinal therapy in the Eastern Asia. However, the molecular basis of the effects of Saussurea lappa on fate of gastric carcinoma, which incur very frequently in the area, has not been well identified. In this study, the cytostatic effects of Saussurea lappa were examined using gastric AGS cancer cells. Cell viability was dramatically reduced by Saussurea lappa, in a dose-dependent manner. As time passed after its treatment, apoptotic population was increased and clearly showed G2-arrest. Being consistent, its treatment resulted in maintaining of G1 and S-phase cyclins D1, E, and A even until a significant apoptotic population was observed, for example, at 24h after treatment. However, G2/M phase cyclin B1 was reduced even at 12 h after treatment. In addition, its treatment increased expression of p53, p21/sup Wafl / cyclin dependent kinase inhibitor (CKI), and Bax, resulted in cleavages of procaspase 3 and poly ADP-ribose polymerase(PARP), indicating that such G2 arrest- and apoptosis-related molecules are involved. Therefore, these suggest that extracts of Saussurea lappa root may be a safer and effective reagent to deal with gastric cancers either by traditional herbal therapy or combinational therapy with conventional chemotherapy.

[ $G_1$ ] Phase Arrest of the Cell Cycle by a Ginseng Metabolite, Compound K, in U937 Human Monocytic Leukamia Cells

  • Kang Kyoung Ah;Kim Yeong Wan;Kim Seung Uk;Chae Sungwook;Koh Young Sang;Kim Hee Sun;Choo Min Kyung;Kim Dong Hyun;Hyun Jin Won
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.685-690
    • /
    • 2005
  • We recently reported that the ginseng saponin metabolite, compound K (20-O-$\beta$-D-glucopyra-nosyl-20(S)-protopanaxadiol, IH901), inhibits the growth of U937 cells through caspase-dependent apoptosis pathway. In this study, we further characterized the effects of compound K on U937 cells and found that, in addition to apoptosis, compound K induced the arrest of the G1 phase. The compound K treated U937 cells showed increased p21 expression; an inhibitory protein of cyclincdk complex. The up-regulation of p21 was followed by the inactivation of cyclin D and the cdk4 protein, which act at the early $G_1$ phase, and cyclin E, which acts at the late $G_1$ phase. Furthermore, compound K induced the activation of JNK and the transcription factor AP-1, which is a downstream target of JNK. These findings suggest that the up-regulation of p21 and activation of JNK in the compound K treated cells contribute to the arrest of the $G_1$ phase.

RNA Interference-Mediated Knockdown of Astrocyte Elevated Gene-1 Inhibits Growth, Induces Apoptosis, and Increases the Chemosensitivity to 5-Fluorouracil in Renal Cancer Caki-1 Cells

  • Wang, Peng;Yin, Bo;Shan, Liping;Zhang, Hui;Cui, Jun;Zhang, Mo;Song, Yongsheng
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.857-864
    • /
    • 2014
  • Astrocyte elevated gene-1 (AEG-1) is a recently discovered oncogene that has been reported to be highly expressed in various types of malignant tumors, including renal cell carcinoma. However, the precise role of AEG-1 in renal cancer cell proliferation and apoptosis has not been clarified. In this study, we transfected the renal cancer cell line Caki-1 with a plasmid expressing AEG-1 short hairpin RNA (shRNA) and obtained cell colonies with stable knockdown of AEG-1. We found that AEG-1 down-regulation inhibited cell proliferation and colony formation and arrested cell cycle progression at the sub-G1 and G0/G1 phase. Western blot analysis indicated that the expression of proliferating cell nuclear antigen (PCNA), cyclin D1 and cyclin E were significantly reduced following AEG-1 down-regulation. In addition, AEG-1 knockdown led to the appearance of apoptotic bodies in renal cancer cells, and the ratio of apoptotic cells significantly increased. Expression of the antiapoptotic factor Bcl-2 was dramatically reduced, whereas the pro-apoptotic factors Bax, caspase-3 and poly (ADPribose) polymerase (PARP) were significantly activated. Finally, AEG-1 knockdown in Caki-1 cells remarkably suppressed cell proliferation and enhanced cell apoptosis in response to 5-fluorouracil (5-FU) treatment, suggesting that AEG-1 inhibition sensitizes Caki-1 cells to 5-FU. Taken together, our data suggest that AEG-1 plays an important role in renal cancer formation and development and may be a potential target for future gene therapy for renal cell carcinoma.

CYP1B1 Activates Wnt/β-Catenin Signaling through Suppression of Herc5-Mediated ISGylation for Protein Degradation on β-Catenin in HeLa Cells

  • Park, Young-Shin;Kwon, Yeo-Jung;Chun, Young-Jin
    • Toxicological Research
    • /
    • v.33 no.3
    • /
    • pp.211-218
    • /
    • 2017
  • Cytochrome P450 1B1 (CYP1B1) acts as a hydroxylase for estrogen and activates potential carcinogens. Moreover, its expression in tumor tissues is much higher than that in normal tissues. Despite this association between CYP1B1 and cancer, the detailed molecular mechanism of CYP1B1 on cancer progression in HeLa cells remains unknown. Previous reports indicated that the mRNA expression level of Herc5, an E3 ligase for ISGylation, is promoted by CYP1B1 suppression using specific small interfering RNA, and that ISGylation may be involved in ubiquitination related to ${\beta}-catenin$ degradation. With this background, we investigated the relationships among CYP1B1, Herc5, and ${\beta}-catenin$. RT-PCR and western blot analyses showed that CYP1B1 overexpression induced and CYP1B1 inhibition reduced, respectively, the expression of $Wnt/{\beta}-catenin$ signaling target genes including ${\beta}-catenin$ and cyclin D1. Moreover, HeLa cells were treated with the CYP1B1 inducer $7,12-dimethylbenz[{\alpha}]anthracene$ (DMBA) or the CYP1B1 specific inhibitor, tetramethoxystilbene (TMS) and consequently DMBA increased and TMS decreased ${\beta}-catenin$ and cyclin D1 expression, respectively. To determine the correlation between CYP1B1 expression and ISGylation, the expression of ISG15, a ubiquitin-like protein, was detected following CYP1B1 regulation, which revealed that CYP1B1 may inhibit ISGylation through suppression of ISG15 expression. In addition, the mRNA and protein expression levels of Herc5 were strongly suppressed by CYP1B1. Finally, an immunoprecipitation assay revealed a direct physical interaction between Herc5 and ${\beta}-catenin$ in HeLa cells. In conclusion, these data suggest that CYP1B1 may activate $Wnt/{\beta}-catenin$ signaling through stabilization of ${\beta}-catenin$ protein from Herc5-mediated ISGylation for proteosomal degradation.

Spatholobus suberectus Water Extract induces Apoptotic Cell Death via Inhibition of Cell Cycle in Jurkat Human Leukemia Cell Line (계혈등 추출물이 Jurkat T 임파구의 세포고사 및 세포주기 억제에 미치는 효과)

  • Cho Nam Su;Jung Woo Cheol;Na Heon Sik;Song Young Jun;Lee Kye Seung;Lee In;Jeon Byung Hun;Moon Byung Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.101-109
    • /
    • 2004
  • Spatholobus suberectus belonging the family Leguminosae has been used for promoting blood circulation, removing blood stasis, tonifying the blood, relaxing tendons, stopping internal bleeding and eliminating dampness in oriental traditional medicine. This study investigates whether the water extracts of S. suberectus induce apoptotic cell death in Jurkat T-acute lymphoblastic leukemia (ALL) cells. Jurkat cells were increased inhibitions of cell viability in a concentration-dependent manner by S. suberectus, as measured by cell morphology. The capability of S. suberectus to induce apoptosis was associated with proteolytic cleavage of specific target protein such as poly (ADP­ribose)polymerase protein suggesting the possible involvement of caspases. The purpose of the present study is also to investigate the effect of S. suberectus on cell cycle progression. G1 checkpoin related gene products tested (cyclin D1, cyclin dependent kinase 4, retinoblastoma, E2Fl) were decreased in their protein levels in a dose-dependent manners after treatment of the extract. These results indicate that the increase of apoptotic cell death by S. suberectus may be due to the inhibition of cell cycle progression in wild type p53-lacking Jurkat cells.

Pro-Apoptotic Effect of Mori Cortex Radicis in A549 Lung Cancer Cells (상백피가 A549 폐암세포주의 세포사에 미치는 영향)

  • Bae Oh-Sung;Yoo Yeong-Min;Lee Seon-Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1563-1567
    • /
    • 2005
  • Mori Cortex Radicis is distributed in Northwestern China, northern Asia, northern Europe, North America, and Korea. This extracts drops sugar in bloods and inhibits cyclic AMP phophodiesterase. In this study, we investigated whether Mori Cortex Radicis would cause apoptotic death of A549 lung cancer cells. To examine the apoptotic effect of Mori Cortex Radicis, cytotoxicity assay, DNA fragmentation analysis, caspase-3 activity assay, and Western blotting for caspase-3, caspase-9 and poly(ADP-ribose) polymerase (PARP) and cytochrome c were performed. Treatment of cells with Mori Cortex Radicis was shown to induce cell death in a dose-dependent manner. DNA fragmentation was made in response to Mori Cortex Radicis. The active fragments of caspase-3, caspase-9 and PARP were almost completely induced and cytochrome c was released following exposure to Mori Cortex Radicis. To elucidate the apoptotic mechanisms, RT-PCR and Western blot analyses for the expression of Bcl-2, Bu and Cox-2 were carried out. Treatment with Mori Cortex Radicis was expressed the reduction of Bcl-2 and Cox-2 and the induction of Bax. Especially p21 and p53 were increased prior to untreated control, while cyclin E and cyclin D1 decreased in the cytosol. These results suggest that the effect Mori Cortex Radicis is associated with the cell cycle arrest and pro-apoptotic cell death in A549 lung cancer cells.

Anti-breast cancer activity of Fine Black ginseng (Panax ginseng Meyer) and ginsenoside Rg5

  • Kim, Shin-Jung;Kim, An Keun
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.125-134
    • /
    • 2015
  • Background: Black ginseng (Ginseng Radix nigra, BG) refers to the ginseng steamed for nine times and fine roots (hairy roots) of that is called fine black ginseng (FBG). It is known that the content of saponin of FBG is higher than that of BG. Therefore, in this study, we examined antitumor effects against MCF-7 breast cancer cells to target the FBG extract and its main component, ginsenoside Rg5 (Rg5). Methods: Action mechanism was determined by MTT assay, cell cycle assay and western blot analysis. Results: The results from MTT assay showed that MCF-7 cell proliferation was inhibited by Rg5 treatment for 24, 48 and 72 h in a dose-dependent manner. Rg5 at different concentrations (0, 25, 50 and $100{\mu}M$), induced cell cycle arrest in G0/G1 phase through regulation of cell cycle-related proteins in MCF-7 cells. As shown in the results from western blot analysis, Rg5 increased expression of p53, $p21^{WAF1/CIP1}$ and $p15^{INK4B}$ and decreased expression of Cyclin D1, Cyclin E2 and CDK4. Expression of apoptosiserelated proteins including Bax, PARP and Cytochrome c was also regulated by Rg5. These results indicate that Rg5 stimulated cell apoptosis and cell cycle arrest at G0/G1 phase via regulation of cell cycle-associated proteins in MCF-7 cells. Conclusion: Rg5 promotes breast cancer cell apoptosis in a multi-path manner with higher potency compared to 20(S)-ginsenoside Rg3 (Rg3) in MCF-7 (HER2/ER+) and MDA-MB-453 (HER2+/ER) human breast cancer cell lines, and this suggests that Rg5 might be an effective natural new material in improving breast cancer.

Cell proliferation and migration mechanism of caffeoylserotonin and serotonin via serotonin 2B receptor in human keratinocyte HaCaT cells

  • Kim, Hye-Eun;Cho, Hyejoung;Ishihara, Atsushi;Kim, Byungkuk;Kim, Okjoon
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.188-193
    • /
    • 2018
  • Caffeoylserotonin (CaS), one derivative of serotonin (5-HT), is a secondary metabolite produced in pepper fruits with strong antioxidant activities. In this study, we investigated the effect of CaS on proliferation and migration of human keratinocyte HaCaT cells compared to that of 5-HT. CaS enhanced keratinocyte proliferation even under serum deficient condition. This effect of CaS was mediated by serotonin 2B receptor (5-HT2BR) related to the cell proliferation effect of 5-HT. We also confirmed that both CaS and 5-HT induced G1 progression via 5-HT2BR/ERK pathway in HaCaT cells. However, Akt pathway was additionally involved in upregulated expression levels of cyclin D1 and cyclin E induced by CaS by activating 5-HT2BR. Moreover, CaS and 5-HT induced cell migration in HaCaT cells via 5-HT2BR. However, 5-HT regulated cell migration only through ERK/AP-1/MMP9 pathway while additional Akt/NF-${\kappa}B$/MMP9 pathway was involved in the cell migration effect of CaS. These results suggest that CaS can enhance keratinocyte proliferation and migration. It might have potential as a reagent beneficial for wound closing and cell regeneration.