• Title/Summary/Keyword: Cyclin D2

Search Result 261, Processing Time 0.025 seconds

Activation and Abnormalities of Cell Cycle Regulating Factor in Head and Neck Squamous Cell Carcinoma Cell Lines: Abnormal Expression of CDKN2 Gene in Laryngeal Squamous Cell Carcinoma (두경부 편평상피세포암 세포주에서 세포주기조절인자의 활성 및 이상 : 후두편평상피세포암에서 종양억제유전자 CDKN2 유전자의 발현이상)

  • Song, Si-Youn;Han, Tae-Hee;Bai, Chang-Hoon;Kim, Yong-Dae;Song, Kei-Won
    • Journal of Yeungnam Medical Science
    • /
    • v.22 no.2
    • /
    • pp.166-182
    • /
    • 2005
  • Background: Cyclin-dependent kinase (CDK) inhibitors are family of molecules that regulate the cell cycle. The CDKN2, a CDK4 inhibitor, also called p16, has been implicated in human tumorigenesis. The CDKN2 inhibits the cyclin/CDK complexes which regulate the transition from G1 to S phase of cell cycle. There is a previous report that homozygous deletion of CDKN2 region on chromosome 9p21 was detected frequently in astrocytoma, glioma and osteosarcoma, less frequently in lung cancer, leukemia and ovarian cancer, but not detected in colon cancer and neuroblastoma. However, little is known about the relationship between CDKN2 and laryngeal cancer. Therefore this study was initiated to investigate the role of CDKN2 in human laryngeal squamous cell carcinoma development.1) Materials and methods: We used 5 human laryngeal carcinoma cell lines whether they have deletions or losses of CDKN2 gene expression by DNA-PCR or RT-PCR, respectively. We examined 8 fresh frozen human laryngeal cancer tissues to detect the loss of heterozygosity (LOH) of CDKN2. PCR was performed by using microsatellite markers of short arm of human chromosome 9 (D9S126, D9S144, D9S156, D9S161, D9S162, D9S166, D9S171, D9S200 and D9SIFNA). For informative cases, allelic loss was scored if the signal of one allele was significantly decreased in tumor DNA when compared to the same allele in normal DNA. Results: The CDKN2 DNA deletion was observed in 3 cell lines. The CDKN2 mRNA expression was observed in only one cell line, which was very weak. LOH was detected in 7 cases (87.5%). Conclusion: These results suggest that CDKN2 plays a role in the carcinogenesis of human laryngeal squamous cell carcinoma.

  • PDF

Synthesis and Biological Activity of Fungal Metabolite, 4-Hydroxy-3-(3'-Methyl-2'-Butenyl)-Benzoic Acid

  • Kim, Hye-Jin;Kwon, Ho-Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.543-545
    • /
    • 2007
  • 4-Hydroxy-3-(3'-methyl-2'-butenyl)-benzoic acid (HMBA) was previously isolated from Curvularia sp. KF119 as a cell-cycle inhibitor. However, the present study used a novel and practical synthetic method to prepare a large quantity of HMBA. The synthetic HMBA was found to inhibit the cell-cycle progression of HeLa cells with a comparable potency to the natural fungal metabolite. The inhibition of the cell-cycle progression by the synthetic HMBA involved both the activation of $p21^{WAF1}$ and the inhibition of cyclin D1 expression in the cells. Consequently, this new synthetic procedure provides an easy and convenient way to produce or manipulate the original fungal metabolite.

The Hair Growth Effects of Wheat Bran (밀기울의 모발 성장 효과)

  • Kang, Jung-Il;Moon, Jungsun;Kim, Eun-Ji;Lee, Young-Ki;Koh, Young-Sang;Yoo, Eun-Sook;Kang, Hee-Kyoung;Yim, Dongsool
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.4
    • /
    • pp.384-390
    • /
    • 2013
  • This study was conducted to evaluate the effect of wheat bran on the promotion of hair growth. When rat vibrissa follicles were treated with n-hexane fraction of wheat bran, the hair-fiber lengths of the vibrissa follicles significantly increased. Moreover, n-hexane fraction of wheat bran was found to significantly induce the telogen-anagen transition in C57BL/6 mice. The fraction increased the proliferation of immortalized vibrissa dermal papilla cells (DPCs) in a dose dependent manner. To elucidate the molecular mechanisms in relation to proliferation of DPCs by the fraction of wheat bran, we examined the expression of cell cycle proteins and wnt/${\beta}$-catenin signaling components. Western blot analysis revealed that the proliferation of DPC by n-hexane fraction of wheat bran was accompanied by increased the level of cyclin D1, cyclin E, phospho-CDK2 and phospho-pRB. In addition, the fraction of wheat bran increased the level of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-GSK$3{\beta}$. These results suggest that the hair growing potential of wheat bran mediated by proliferation of DPCs via the regulation of cell cycle proteins and Wnt/${\beta}$-catenin signaling.

RNA Interference-Mediated Knockdown of Astrocyte Elevated Gene-1 Inhibits Growth, Induces Apoptosis, and Increases the Chemosensitivity to 5-Fluorouracil in Renal Cancer Caki-1 Cells

  • Wang, Peng;Yin, Bo;Shan, Liping;Zhang, Hui;Cui, Jun;Zhang, Mo;Song, Yongsheng
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.857-864
    • /
    • 2014
  • Astrocyte elevated gene-1 (AEG-1) is a recently discovered oncogene that has been reported to be highly expressed in various types of malignant tumors, including renal cell carcinoma. However, the precise role of AEG-1 in renal cancer cell proliferation and apoptosis has not been clarified. In this study, we transfected the renal cancer cell line Caki-1 with a plasmid expressing AEG-1 short hairpin RNA (shRNA) and obtained cell colonies with stable knockdown of AEG-1. We found that AEG-1 down-regulation inhibited cell proliferation and colony formation and arrested cell cycle progression at the sub-G1 and G0/G1 phase. Western blot analysis indicated that the expression of proliferating cell nuclear antigen (PCNA), cyclin D1 and cyclin E were significantly reduced following AEG-1 down-regulation. In addition, AEG-1 knockdown led to the appearance of apoptotic bodies in renal cancer cells, and the ratio of apoptotic cells significantly increased. Expression of the antiapoptotic factor Bcl-2 was dramatically reduced, whereas the pro-apoptotic factors Bax, caspase-3 and poly (ADPribose) polymerase (PARP) were significantly activated. Finally, AEG-1 knockdown in Caki-1 cells remarkably suppressed cell proliferation and enhanced cell apoptosis in response to 5-fluorouracil (5-FU) treatment, suggesting that AEG-1 inhibition sensitizes Caki-1 cells to 5-FU. Taken together, our data suggest that AEG-1 plays an important role in renal cancer formation and development and may be a potential target for future gene therapy for renal cell carcinoma.

Spatholobus suberectus Water Extract induces Apoptotic Cell Death via Inhibition of Cell Cycle in Jurkat Human Leukemia Cell Line (계혈등 추출물이 Jurkat T 임파구의 세포고사 및 세포주기 억제에 미치는 효과)

  • Cho Nam Su;Jung Woo Cheol;Na Heon Sik;Song Young Jun;Lee Kye Seung;Lee In;Jeon Byung Hun;Moon Byung Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.101-109
    • /
    • 2004
  • Spatholobus suberectus belonging the family Leguminosae has been used for promoting blood circulation, removing blood stasis, tonifying the blood, relaxing tendons, stopping internal bleeding and eliminating dampness in oriental traditional medicine. This study investigates whether the water extracts of S. suberectus induce apoptotic cell death in Jurkat T-acute lymphoblastic leukemia (ALL) cells. Jurkat cells were increased inhibitions of cell viability in a concentration-dependent manner by S. suberectus, as measured by cell morphology. The capability of S. suberectus to induce apoptosis was associated with proteolytic cleavage of specific target protein such as poly (ADP­ribose)polymerase protein suggesting the possible involvement of caspases. The purpose of the present study is also to investigate the effect of S. suberectus on cell cycle progression. G1 checkpoin related gene products tested (cyclin D1, cyclin dependent kinase 4, retinoblastoma, E2Fl) were decreased in their protein levels in a dose-dependent manners after treatment of the extract. These results indicate that the increase of apoptotic cell death by S. suberectus may be due to the inhibition of cell cycle progression in wild type p53-lacking Jurkat cells.

Methanol extract of Elsholtzia fruticosa promotes 3T3-L1 preadipocyte differentiation

  • Deumaya Shrestha;Eunbin Kim;Krishna K. Shrestha;Sung-Suk Suh;Sung-Hak Kim;Jong Bae Seo
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.204-218
    • /
    • 2024
  • Elsholtzia fruticosa (EF) is present in tropical regions throughout South Asian countries as well as the Himalayas. Although it has been used as a traditional medicine to treat digestive, respiratory, and inflammatory issues, its effect on preadipocyte differentiation is unknown. In this study, we examined the effects of a methanol extract prepared from EF on the differentiation of 3T3-L1 preadipocytes. Cell differentiation was assessed by microscopic observation and oil-red O staining. The expression of adipogenic and lipogenic genes, including PPARγ and C/EBPα, was measured by western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR), to provide insight into adipogenesis and lipogenesis mechanisms. The results indicated that EF promotes the differentiation of 3T3-L1 preadipocytes, with elevated lipid accumulation occurring in a concentration-dependent manner without apparent cytotoxicity. EF enhances the expression of adipogenic and lipogenic genes, including PPARγ, FABP4, adiponectin, and FAS, at the mRNA and protein levels. The effect of EF was more pronounced during the early and middle stages of 3T3-L1 cell differentiation. Treatment with EF decreased C/EBP homologous protein (CHOP) mRNA and protein levels, while increasing C/EBPα and PPARγ expression. Treatment with EF resulted in the upregulation of cyclin E and CDK2 gene expression within 24 h, followed by a decrease at 48 h, demonstrating the early-stage impact of EF. A concomitant increase in cyclin-D1 levels was observed compared with untreated cells, indicating that EF modulates lipogenic and adipogenic genes through intricate mechanisms involving CHOP and cell cycle pathways. In summary, EF induces the differentiation of 3T3-L1 preadipocytes by increasing the expression of adipogenic and lipogenic genes, possibly through CHOP and cell cycle-dependent mechanisms.

Anti-cancer activity of the ethylacetate fraction from Orostachys japonicus in A549 human lung cancer cells by induction of apoptosis and cell cycle arrest (인체 폐암 세포에 대한 와송 유래 에틸아세테이트 분획 생리 활성 물질의 세포사멸 유도 및 세포주기 억제 항암활성)

  • Kwon, Ji-Hye;Lee, Dong-Seok;Jung, Eun-Cheol;Kim, Hyeon-Mi;Kim, Su-Bin;Ryu, Deok-Seon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.1
    • /
    • pp.395-405
    • /
    • 2017
  • To confirm potential anti-cancer activities of ethylacetate (EtOAc) fraction from Orostachys japonicus on the A549 human lung cancer cells, this study examined. As a result of conducting MTS assay for measuring cell viability, the EtOAc fraction inhibited the proliferation of A549 cells in a dose-dependent manner. To investigate whether the inhibiting A549 cell viability was caused by apoptosis, this study analyzed chromatin condensation in A549 cells using DAPI staining. The morphological changes such as the formation of nuclear condensation were formed in a dose-dependent manner. Also, this study performed Annexin V-FITC staining for detecting phosphatidylinositol (PS). As a result of Annexin V-FITC staining to investigate level of early and late apoptosis, the apoptosis level treated with EtOAc fraction was higher than that of control. RT-PCR was performed to study the correlation between G2/M cell cycle arrest and cell cycle control genes. The anti-cancer activity of EtOAc fraction was accompanied by inhibition of CDK1, 4, cyclin B1 and D1 mRNA. This study also examined the expression of various marker proteins: p53, Bax, Bcl-2 and pro-caspase 3. Western blotting revealed that p53 and Bax proteins were up-regulated, and Bcl-2 and pro-caspase 3 proteins down-regulated in a time and dose-dependent manner.

Licochalcone D Inhibits Skin Epidermal Cells Transformation through the Regulation of AKT Signaling Pathways

  • Sun-Young Hwang;Kwanhwan Wi;Goo Yoon;Cheol-Jung Lee;Soong-In Lee;Jong-gil Jung;Hyun-Woo Jeong;Jeong-Sang Kim;Chan-Heon Choi;Chang-Su Na;Jung-Hyun Shim;Mee-Hyun Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.682-691
    • /
    • 2023
  • Cell transformation induced by epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA) is a critical event in cancer initiation and progression, and understanding the underlying mechanisms is essential for the development of new therapeutic strategies. Licorice extract contains various bioactive compounds, which have been reported to have anticancer and anti-inflammatory effects. This study investigated the cancer preventive efficacy of licochalcone D (LicoD), a chalcone derivative in licorice extract, in EGF and TPA-induced transformed skin keratinocyte cells. LicoD effectively suppressed EGF-induced cell proliferation and anchorage-independent colony growth. EGF and TPA promoted the S phase of cell cycle, while LicoD treatment caused G1 phase arrest and down-regulated cyclin D1 and up-regulated p21 expression associated with the G1 phase. LicoD also induced apoptosis and increased apoptosis-related proteins such as cleaved-caspase-3, cleaved-caspase-7, and Bax (Bcl2-associated X protein). We further investigated the effect of LicoD on the AKT signaling pathway involved in various cellular processes and found decreased p-AKT, p-GSK3β, and p-NFκB expression. Treatment with MK-2206, an AKT pharmacological inhibitor, suppressed EGF-induced cell proliferation and transformed colony growth. In conclusion, this study demonstrated the potential of LicoD as a preventive agent for skin carcinogenesis.

Tumorigenic Effects of 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin in Normal Human Skin and Lung Fibroblasts (사람의 정상 피부세포 및 폐세포의 발암에 미치는 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin의 영향)

  • Kang, Mi-Kyung;Ryeom, Tai-Kyung;Kim, Kang-Ryune;Kim, Ok-Hee;Kang, Ho-Il
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.3
    • /
    • pp.77-85
    • /
    • 2006
  • 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin(TCDD) displays high toxicity in animals and has been implicated in human carcinogenesis. Although TCDD is recognized as potent carcinogens, relatively little is known about their role in the tumor promotion and carcinogenesis. It is known that TCDD can increase of cancer risk from various types of tissue by a mechanism possibly involving the aryl hydrocarbon receptor (AhR) activation. In this study, effects of TCDD on cellular proliferation of normal human skin and lung fibroblasts, Detroit551 and WI38 cells were investigated. In addition, to enhance our understanding of TCDD-mediated carcinogenesis, we have investigated process in which expression of Erk1/2, cyclinD1, oncogene such as Ha-ras and c-myc, and their cognate signaling pathway. TCDD that are potent activators of AhR-mediated activity was found to induce significant increase of cytochrome P4501A1 mRNA expression, suggesting a presence of functional AhR. These results support that CYP1A1 enzyme may be involved in the generation of TCDD-induced toxicity. Moreover mitogen-activated protein kinases (MARKs) phosphorylation and cyclin D1 overexpression are induced by TCDD, which corresponded with the progression of cellular proliferation. However, TCDD did not affected Ha-ras and c-myc mRNA expression. Taken together, it seems that TCDD are could be a part of cellular proliferation in non-tumorigenic normal human cells such as Detroit551 and WI38 cells through the upregulation of MAPKs signaling pathway regulating growth of cell population. Therefore, AhR-activating TCDD could potentially contribute to tumor promotion and Detroit551 and WI38 cells have been used as a detection system of tumorigenic effects of TCDD.

  • PDF

TC1 (C8orf4) is involved in ERK1/2 pathway-regulated G1- to S-phase transition

  • Wang, Yi-Dong;Bian, Guo-Hui;Lv, Xiao-Yan;Zheng, Rong;Sun, Huan;Zhang, Zheng;Chen, Ye;Li, Qin-Wei;Xiao, Yan;Yang, Qiu-Tan;Ai, Jian-Zhong;Wei, Yu-Quan;Zhou, Qin
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.733-738
    • /
    • 2008
  • Although previous studies have implicated a role for TC1 (C8orf4) in cancer cell proliferation, the molecular mechanism of its action is still largely unclear. In this study, we showed, for the first time, that the mRNA levels of TC1 were upregulated by mitogens (FBS/thrombin) and at least partially, through the ERK1/2 signaling pathway. Interestingly, the over-expression of TC1 promoted the $G_1$- to S-phase transition of the cell cycle, which was delayed by the deficiency of ERK1/2 signaling in fibroblast cells. Furthermore, the luciferase reporter assay indicated that the over-expression of TC1 significantly increased Cyclin D1 promoter-driven luciferase activity. Taken together, our findings revealed that TC1 was involved in the mitogen-activated ERK1/2 signaling pathway and positively regulated $G_1$- to S-phase transition of the cell cycle. Our results may provide a novel mechanism of the role of TC1 in the regulation of cell proliferation.