• Title/Summary/Keyword: Cyclin D1

Search Result 334, Processing Time 0.027 seconds

Immuno enhancing and chemopreventing agent from mushroom mycelial culture (버섯균사체 배양물로부터 면역증진 기능성 소재 개발)

  • Kim, Jeong-Ok
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2007.11a
    • /
    • pp.27-31
    • /
    • 2007
  • This study relates to low and medium molecular weight isoflavone-${\beta}$-D-glucan produced by submerged liquid culture of Agaricus blazei, a method of producing the isoflavone-B-D-glucan using autolysis enzyme of Agaricus blazei mycelia, and use of the isoflavone-B-D-glucan for anti-cancer and immunoenhancing effect. In acordance with one aspect of the present study, it deals with a method of producing isoflavone-${\beta}$-D-glucan, which comprises the followings; 1) culturing and separating mushroom mycelia, 2) producing low-medium molecular weight isoflavone-${\beta}$-D-glucan from high molecular weight one. The cytotoxicity on human cnacer cell line (Caco-2, MCF-7), the expression of Cyclin D, Bcl-2, Bax protein, p21 protein, p53 protein in MCF-7 cells assessed by SDS-PAGE and immunoblotting, and other immuno related factors such as TNF-${\alpha}$ and IL-1B activities were examined. Structural identification of isoflavone-${\beta}$-D-glucan which showed cytotoxicity against cancer cell and immunoenhancing effects was carried by separation with DEAE-cellulose column chromatography, TLC, HPLC, IR, NMR. Clinical test for the cancer patients (n=119) for 6 month was carried out, and immunoenhancing factors (NK. cell number, ratio of T4/T8) were checked. We concluded the identified isoflavone-${\beta}$-D-glucan has immuno enhancing effects and could be useful for cancer chemoprevention.

  • PDF

버섯균사체 배양물로부터 면역증진 기능성 소재 개발

  • Kim, Jeong-Ok
    • Food preservation and processing industry
    • /
    • v.6 no.2
    • /
    • pp.11-13
    • /
    • 2007
  • This study relates to low and medium molecular weight isoflavone-${\beta}$-D-glucan produced by submerged liquid culture of Agaricus blazei, a method of producing the isoflavone-B-D-glucan using autolysis enzyme of Agaricus blazei mycelia, and use of the isoflavone-B-D-glucan for anti-cancer and immunoenhancing effect. In acordance with one aspect of the present study, it deals with a method of producing isoflavone-${\beta}$-D-glucan, which comprises the followings; 1) culturing and separating mushroom mycelia, 2) producing low-medium molecular weight isoflavone-${\beta}$-D-glucan from high molecular weight one. The cytotoxicity on human cnacer cell line (Caco-2, MCF-7), the expression of Cyclin D, Bcl-2, Bax protein, p21 protein, p53 protein in MCF-7 cells assessed by SDS-PAGE and immunoblotting, and other immuno related factor such as TNF-a and IL-1B activities were examined. Structural identification of isoflavone-${\beta}$-D-glucan which shoed cytotoxicity against cancer cell and immunoenhancing effects was carried by separation with DEAE-cellulose column chromatography, TLC, HPLC, IR, NMR, Clinical test for the cancer patients (n=119) for 6 month was carried out, and immunoenhancing factors(NK cell number, ratio of T4/T8) were checked. We concluded the identified isoflavone-${\beta}$-D-glucan has immuno enhancing effects and could be useful for cancer chemoprevention.

  • PDF

Effects of Hominis Placenta on the Growth of Human Uterine Myoma Cells and Cell Apoptosis (자하거(紫河車)가 자궁근종세포(子宮筋腫細胞)의 성장억제(成長抑制)와 세포자멸사(細胞自滅死)에 미치는 영향(影響))

  • Wee, Hyo-Sun;Lee, Jin-Moo;Lee, Chang-Hoon;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.21 no.2
    • /
    • pp.38-48
    • /
    • 2008
  • Purpose: This study was conducted to investigate the effects of Hominis Placenta (紫河車) on the growth of human uterine myoma cells and cell apoptosis. Methods: Human uterine leiomyoma cells were cultured and treated with Hominis Placenta extract for 48 hours. Cell proliferation and activity was analyzed by MTT assay. We analyzed the cell cycle of human uterine myoma cells treated Hominis Placenta extract by FACS. Expression of proteins related to cell apoptosis (Bax, Bcl-2), cyclin-D1 and VEGF were evaluated by Western blotting method. Results: The human uterine myoma cells treated by Hominis Placenta extract didn't proliferate below the concentration of $10mg/m{\ell}$. And there was no remarkable difference on cell cycle analysis below the concentration of $10mg/m{\ell}$. The expression of Bax was decreased and the expression of Bcl-2 was increased after the treatment of Hominis Placenta extract. But the expressions of cyclin-D1 and VEGF were increased after the treatment of Hominis Placenta extract. Conclusion: This study suggests that Hominis Placenta induce uterine myoma cell apoptosis and have effect on the myoma cell proliferation in the concentraion below $10mg/m{\ell}$.

  • PDF

Cripto Enhances Proliferation and Survival of Mesenchymal Stem Cells by Up-Regulating JAK2/STAT3 Pathway in a GRP78-Dependent Manner

  • Yun, SeungPil;Yun, Chul Won;Lee, Jun Hee;Kim, SangMin;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.464-473
    • /
    • 2018
  • Cripto is a small glycosylphosphatidylinositol-anchored signaling protein that can detach from the anchored membrane and stimulate proliferation, migration, differentiation, vascularization, and angiogenesis. In the present study, we demonstrated that Cripto positively affected proliferation and survival of mesenchymal stem cells (MSCs) without affecting multipotency. Cripto also increased expression of phosphorylated janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), 78 kDa glucose-regulated protein (GRP78), c-Myc, and cyclin D1. Notably, treatment with an anti-GRP78 antibody blocked these effects. In addition, pretreatment with STAT3 short interfering RNA (siRNA) inhibited the increase in p-JAK2, c-Myc, cyclin D1, and BCL3 levels caused by Cripto and attenuated the pro-survival action of Cripto on MSCs. We also found that incubation with Cripto protected MSCs from apoptosis caused by hypoxia or $H_2O_2$ exposure, and the level of caspase-3 decreased by the Cripto-induced expression of B-cell lymphoma 3-encoded protein (BCL3). These effects were sensitive to down-regulation of BCL3 expression by BCL3 siRNA. Finally, we showed that Cripto enhanced expression levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF). In summary, our results demonstrated that Cripto activated a novel biochemical cascade that potentiated MSC proliferation and survival. This cascade relied on phosphorylation of JAK2 and STAT3 and was regulated by GRP78. Our findings may facilitate clinical applications of MSCs, as these cells may benefit from positive effects of Cripto on their survival and biological properties.

Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin Pathway

  • Song, Geu Rim;Choi, Yoon Jung;Park, Soo Jin;Shin, Subeen;Lee, Giseong;Choi, Hui Ji;Lee, Do Yup;Song, Gyu-Yong;Oh, Sangtaek
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1559-1567
    • /
    • 2021
  • The root bark of Morus alba L. has cytotoxic activity against several types of cancer cells. However, little is known about its chemopreventive mechanisms and bioactive metabolites. In this study, we showed that M. alba L. root bark extracts (MRBE) suppressed β-catenin response transcription (CRT), which is aberrantly activated in various cancers, by promoting the degradation of β-catenin. In addition, MRBE repressed the expression of the β-catenin/T-cell factor (TCF)-dependent genes, c-myc and cyclin D1, thus inhibiting the proliferation of RPMI-8226 multiple myeloma (MM) cells. MRBE induced apoptosis in MM cells, as evidenced by the increase in the population of annexin VFITC-positive cells and caspase-3/7 activity. We identified ursolic acid in MRBE through LC/mass spectrum (MS) and observed that it also decreased intracellular β-catenin, c-myc, and cyclin D1 levels. Furthermore, it suppressed the proliferation of RPMI-8226 cells by stimulating cell cycle arrest and apoptosis. These findings suggest that MRBE and its active ingredient, ursolic acid, exert antiproliferative activity by promoting the degradation of β-catenin and may have significant chemopreventive potential against MM.

RNA Interference-Mediated Knockdown of Astrocyte Elevated Gene-1 Inhibits Growth, Induces Apoptosis, and Increases the Chemosensitivity to 5-Fluorouracil in Renal Cancer Caki-1 Cells

  • Wang, Peng;Yin, Bo;Shan, Liping;Zhang, Hui;Cui, Jun;Zhang, Mo;Song, Yongsheng
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.857-864
    • /
    • 2014
  • Astrocyte elevated gene-1 (AEG-1) is a recently discovered oncogene that has been reported to be highly expressed in various types of malignant tumors, including renal cell carcinoma. However, the precise role of AEG-1 in renal cancer cell proliferation and apoptosis has not been clarified. In this study, we transfected the renal cancer cell line Caki-1 with a plasmid expressing AEG-1 short hairpin RNA (shRNA) and obtained cell colonies with stable knockdown of AEG-1. We found that AEG-1 down-regulation inhibited cell proliferation and colony formation and arrested cell cycle progression at the sub-G1 and G0/G1 phase. Western blot analysis indicated that the expression of proliferating cell nuclear antigen (PCNA), cyclin D1 and cyclin E were significantly reduced following AEG-1 down-regulation. In addition, AEG-1 knockdown led to the appearance of apoptotic bodies in renal cancer cells, and the ratio of apoptotic cells significantly increased. Expression of the antiapoptotic factor Bcl-2 was dramatically reduced, whereas the pro-apoptotic factors Bax, caspase-3 and poly (ADPribose) polymerase (PARP) were significantly activated. Finally, AEG-1 knockdown in Caki-1 cells remarkably suppressed cell proliferation and enhanced cell apoptosis in response to 5-fluorouracil (5-FU) treatment, suggesting that AEG-1 inhibition sensitizes Caki-1 cells to 5-FU. Taken together, our data suggest that AEG-1 plays an important role in renal cancer formation and development and may be a potential target for future gene therapy for renal cell carcinoma.

Effect of Flavopiridol on Radiation-induced Apoptosis of Human Laryngeal and Lung Cancer Cells (후두암 및 폐암 세포주에서 Flavopiridol이 방사선에 의한 아포토시스에 미치는 영향)

  • Kim, Su-Zy;Kwon, Eun-Kyung;Lee, Seung-Hee;Park, Hye-Jin;Wu, Hong-Gyun
    • Radiation Oncology Journal
    • /
    • v.25 no.4
    • /
    • pp.227-232
    • /
    • 2007
  • Purpose: To investigate the flavopiridol effect on radiation-induced apoptosis and expression of apoptosisrelated genes of human laryngeal and lung cancer cells. Materials and Methods: A human laryngeal cancer cell line, AMC-HN3 and a human lung cancer cell line, NCI-H460, were used in the study. The cells were divided into four groups according to the type of treatment: 1) control groups; 2) cells that were only irradiated; 3) cells treated only with flavopiridol; 4) cells treated with flavopiridol and radiation simultaneously. The cells were irradiated with 10 Gy of X-rays using a 4 MV linear accelerator. Flavopiridol was administered to the media at a concentration of 100 nM for 24 hours. We compared the fraction of apoptotic cells of each group 24 hours after the initiation of treatment. The fraction of apoptotic cells was detected by measurement of the sub-G1 fractions from a flow cytometric analysis. The expression of apoptosis-regulating genes, including cleaved caspase-3, cleaved PARP (poly (ADP-ribose) polymerase), p53, p21, cyclin D1, and phosphorylated Akt (protein kinase B) were analyzed by Western blotting. Results: The sub-G1 fraction of cells was significantly increased in the combination treatment group, as compared to cells exposed to radiation alone or flavopiridol alone. Western blotting also showed an increased expression of cleaved caspase-3 and cleaved PARP expression in cells of the combination treatment group, as compared with cells exposed to radiation alone or flavopiridol alone. Treatment with flavopiridol down regulated cyclin 01 expression of both cell lines but its effect on p53 and p21 expression was different according to each individual cell line. Flavopiridol did not affect the expression of phophorylated Akt in both cell lines. Conclusion: Treatment with flavopiridol increased radiation-induced apoptosis of both the human laryngeal and lung cancer cell lines. Flavopiridol effects on p53 and p21 expression were different according to the individual cell line and it did not affect Akt activation of both cell lines.

Induction of p53-Dependent G1 Cell Cycle Arrest by Rhus verniciflua. Stokes Extract in Human Breast Carcinoma MCF-7 Cells (MCF-7 인체 유방암 세포에서 옻나무 추출물이 p53-Dependent G1 Cell Cycle에 미치는 영향)

  • Hong, Sang-hoon;Han, Min-ho;Choi, Yung-hyun;Park, Sang-eun
    • The Journal of Internal Korean Medicine
    • /
    • v.36 no.1
    • /
    • pp.13-21
    • /
    • 2015
  • Objectives : In Korea, Rhus verniciflua Stokes (RVS) has been used in traditional medicine for various diseases such as back pain, syndromes of the blood system in women, gastrointestinal disease, and cancer. However, the molecular mechanisms of its anti-cancer activity have not been clearly elucidated yet. Methods : This study investigated the possible mechanisms by which RVS extract (RVE) exerts its anti-proliferative action in cultured human breast carcinoma MCF-7 cells. Results : Treatment with RVE in MCF-7 cells resulted in inhibition of cell viability through G1 arrest of the cell cycle and induction of apoptosis in a time- and concentration-dependent manner, as determined by MTT assay and flow cytometry analysis. The induction of G1 arrest by RVE treatment was associated with the inhibition of cyclin D1, cyclin-dependent kinase (Cdk) 2, retinoblastoma protein (pRB), and mouse double minute 2 (MDM2) expression. Moreover, RVE treatment concentration dependently increased the levels of tumor suppressor p53, which was associated with the marked induction of Cdk inhibitors such as p21 (Waf1/Cip1) and p27 (Kip1). However, the inhibition of p53 function by the wild-type p53-specific inhibitor, pifithrin-α, abolished the above-mentioned effects of RVE, showing that p53 was responsible for the cytotoxicity of RVE Conclusions : These data indicate that a molecular pathway involving p53-dependent G1 cell cycle arrest plays a pivotal role in the cellular response to RVE, and demonstrate the potential applications of RVE as an anti-cancer drug for breast cancer treatment.

HY253, a Novel Decahydrofluorene Analog, Induces Apoptosis via Intrinsic Pathway and Cell Cycle Arrest in Liver Cancer HepG2 Cells

  • Choi, Ko-woon;Suh, Hyewon;Jang, Seunghun;Kim, Dongsik;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.413-417
    • /
    • 2015
  • Recently, we isolated HY253, a novel decahydrofluorene analog with a molecular structure of 7,8a-divinyl-2,4a,4b,5,6,7,8,8a,9,9a-decahydro-1H-fluorene-2,4a,4b,9a-tetraol from the roots of Aralia continentalis, which is known as Dokwhal (獨活), a traditional medicinal herb. Moreover, we previously reported its cytotoxic activity on cancer cell proliferation in human lung cancer A549 and cervical cancer HeLa cells. The current study aimed to evaluate its detailed molecular mechanisms in cell cycle arrest and apoptotic induction in human hepatocellular carcinoma HepG2 cells. Flow cytometric analysis of HepG2 cells treated with $60{\mu}M$ HY253 revealed appreciable cell cycle arrest at the G1 phase via inhibition of Rb phosphorylation and down-regulation of cyclin D1. Furthermore, using western blots, we found that up-regulation of cyclin-dependent kinase inhibitors, such as p21CIP1 and p27KIP1, was associated with this G1 phase arrest. Moreover, TUNEL assay and immunoblottings revealed apoptotic induction in HepG2 cells treated with $60{\mu}M$ HY253 for 24 h, which is associated with cytochrome c release from mitochondria, via down-regulation of anti-apoptotic Bcl-2 protein, which in turn resulted in activation of caspase-9 and -3, and proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). Accordingly, we suggest that HY253 may be a potent chemotherapeutic hit compound for treating human liver cancer cells via up-regulation and activation of the p53 gene.

Methanol extract of Elsholtzia fruticosa promotes 3T3-L1 preadipocyte differentiation

  • Deumaya Shrestha;Eunbin Kim;Krishna K. Shrestha;Sung-Suk Suh;Sung-Hak Kim;Jong Bae Seo
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.204-218
    • /
    • 2024
  • Elsholtzia fruticosa (EF) is present in tropical regions throughout South Asian countries as well as the Himalayas. Although it has been used as a traditional medicine to treat digestive, respiratory, and inflammatory issues, its effect on preadipocyte differentiation is unknown. In this study, we examined the effects of a methanol extract prepared from EF on the differentiation of 3T3-L1 preadipocytes. Cell differentiation was assessed by microscopic observation and oil-red O staining. The expression of adipogenic and lipogenic genes, including PPARγ and C/EBPα, was measured by western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR), to provide insight into adipogenesis and lipogenesis mechanisms. The results indicated that EF promotes the differentiation of 3T3-L1 preadipocytes, with elevated lipid accumulation occurring in a concentration-dependent manner without apparent cytotoxicity. EF enhances the expression of adipogenic and lipogenic genes, including PPARγ, FABP4, adiponectin, and FAS, at the mRNA and protein levels. The effect of EF was more pronounced during the early and middle stages of 3T3-L1 cell differentiation. Treatment with EF decreased C/EBP homologous protein (CHOP) mRNA and protein levels, while increasing C/EBPα and PPARγ expression. Treatment with EF resulted in the upregulation of cyclin E and CDK2 gene expression within 24 h, followed by a decrease at 48 h, demonstrating the early-stage impact of EF. A concomitant increase in cyclin-D1 levels was observed compared with untreated cells, indicating that EF modulates lipogenic and adipogenic genes through intricate mechanisms involving CHOP and cell cycle pathways. In summary, EF induces the differentiation of 3T3-L1 preadipocytes by increasing the expression of adipogenic and lipogenic genes, possibly through CHOP and cell cycle-dependent mechanisms.