• Title/Summary/Keyword: Cyclic voltammograms

Search Result 105, Processing Time 0.019 seconds

Electrocatalytic activity of the bimetallic Pt-Ru catalysts doped TiO2-hollow sphere nanocomposites (Pt-Ru@TiO2-H 나노구조체촉매의 합성 및 전기화학적 특성평가)

  • Lee, In-Ho;Kwen, Hai-Doo;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.42-50
    • /
    • 2013
  • This paper describes the electrocatalytic activity for the oxidation of small biomolecules on the surface of Pt-Ru nanoparticles supported by $TiO_2$-hollow sphere prepared for use in sensor applications or fuel cells. The $TiO_2$-hollow sphere supports were first prepared by sol-gel reaction of titanium tetraisopropoxide with poly(styrene-co-vinylphenylboronic acid), PSB used as a template. Pt-Ru nanoparticles were then deposited by chemical reduction of the $Pt^{4+}$ and $Ru^{3+}$ ions onto $TiO_2$-hollow sphere ($Pt-Ru@TiO_2-H$). The prepared $Pt-Ru@TiO_2-H$ nanocomposites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and elemental analysis. The electrocatalytic efficiency of Pt-Ru nanoparticles was evaluated via ethanol, methanol, dopamine, ascorbic acid, formalin, and glucose oxidation. The cyclic voltammograms (CV) obtained during the oxidation studies revealed that the $Pt-Ru@TiO_2-H$ nanocomposites showed high electrocatalytic activity for the oxidation of biomolecules. As a result, the prepared Pt-Ru catalysts doped onto $TiO_2$-H sphere nanocomposites supports can be used for non-enzymatic biosensor or fuel cell anode electrode.

Variations of the Electrochemical Properties of LiMn2O4 with the Calcining Temperature

  • Song, Myoung-Youp;Shon, Mi-suk
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.523-527
    • /
    • 2002
  • LiMn$_2$O$_4$ compounds were synthesized by calcining a mixture of LiOH and MnO$_2$(CMD) at 47$0^{\circ}C$ for 10 h and then calcining again at $650^{\circ}C$ to 90$0^{\circ}C$ fur 48 h in air with intermediate grinding. All the synthesized samples exhibited XRD patterns for the cubic spinel phase with a space group Fd3m. The lattice parameter increased gradually as the sintering temperature rose. The electrochemical cells were charged and discharged fur 20 cycles at a current density 300$\mu$A/$\textrm{cm}^2$ between 3.5 V and 4.3 V. The voltage vs. discharge capacity curves for all the samples showed two plateaus. The LiMn$_2$O$_4$ sample calcined at 90$0^{\circ}C$ had the largest first discharge capacity. This sample exhibited the best crystallinity, had relatively large lattice parameter and had relatively large particles with rectatively homogeneous size. All the samples showed good cycling performances. Among all the samples, the LiMn$_2$O$_4$ calcined at 85$0^{\circ}C$ had relatively large first discharge capacity and very good cycling performance. The addition of excess LiOH and the mixing in ethanol considered to help the formation of the more LiMn$_2$O$_4$ phase per unit weight sample and the more stable LiMn$_2$O$_4$phase. These led to the larger discharge capacities and the better cycling performances. The cyclic voltammograms fur the second cycle of the LiMn$_2$O$_4$ samples showed the oxidation and reduction peaks around 4.05 V and 4.18 V and around 4.08 V and 3.94 V, respectively. The larger first discharge capacity of the sample calcined at the higher temperature is related to the larger lattice parameter.

Synthesis, Stability Constants, X-ray Structure and Electrochemical Studies of Copper (II) 1, 14-Bis (2-hydroxybenzyl)-2, 6, 9, 12-tetraazatetradecane.tetrahydrochloride Complex (1, 14-Bis(2-hydroxybenzyl)-2, 6, 9, 12-tetraazatetradecane.tetrahydro-chloride 구리착물의 합성, 안정도상수, X-ray 구조 및 전기화학적 연구)

  • Kim, Sun-Deuk;Kim, Jun-Kwang;Kim, Seong-Yun
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.173-178
    • /
    • 2000
  • A new open-chain ligand containing two phenol groups, 1, 14-Bis (2-hydroxybenzyl)-2, 6, 9, 12-tetraazatetradecane(bsated) was synthesized as its tetrahydrochloride salt and characterized by elemental analysis, mass, infrared and NMR. Its proton dissociation constants ($logK^n{_H}$) and stability constants ($logK_{ML}$) toward $Co^{2+}$, $Ni^{2+}$, $Cu^{2+}$ and $Zn^{2+}$ were determined at $25^{\circ}C$ and 0.10M($KNO_3$) ionic strength in aqueous solution by potentiometry. The X-ray structure of its copper (II) complex [Cu(bsated)]$(ClO_4)_2$ was reported: Monoclinic space group $P2_1/n$, $a=17.856(4){\AA}$, $b=17.709(1){\AA}$, $c=8.539(2){\AA}$, $V=2700(2){\AA}$ with Z=4. Electrochemical studies of [Cu(bsated)]$(ClO_4)_2$ complex in dimethyl sulfoxide (DMSO) solution containing tetrabutylammonium perchlorate (supporting electrolyte) were carried out by cyclic voltammograms (CV) and normal pulse voltammetry (NPV).

  • PDF

Characterization of immobilized laccase and its catalytic activities (고정된 laccase의 특성 및 촉매효과)

  • Hyung Kyung Hee;Shin Woonsup
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.31-37
    • /
    • 1999
  • Copper-containig enzyme, laccase (Rhus vernicifera) was immobilized onto gold electrode using self-assembly technique and its surface properties and catalytic activities were examined. Laccase is an oxidoreductase capable to oxidize diphenols or diamines by 4-electron reduction of molecular oxygen without superoxide or peroxide intermediates. The electrode surface were modified by $\beta-mercaptopropionate$ to have a net negative charge in neutral solution and positively charged laccase (pI=9) was immobilized by electrostatic interaction. The successful immobilization was confirmed by cyclic voltammograms which showed typical surface-confined shapes and behaviors. The amount of charge to reduce the surface was similar to the charge calculated assuming the surface being covered by monolayer. The activity of the immobilized enzyme was tested by the capbility of oxidizing a substrate, ABTS (2,2-azine-bis-(3-ethylbenzthioline-6-sulfonic acid) and it was maintained for $2\~3$ days at $4^{\circ}C$. The immobilzed laccase showed about $10\~15\%$ activity compared to that in solution. The laccase-modified electrode showed the activity of elefoocatalytic reduction of oxygen in the presence of mediator, $Fe(CN)_6^{3-}$ The addtion of azide which is an inhibitor of laccase compeletly eliminated the catalytic current.

Opto-Electrochemical Sensing Device Based on Long-Period Grating Coated with Boron-Doped Diamond Thin Film

  • Bogdanowicz, Robert;Sobaszek, Michał;Ficek, Mateusz;Gnyba, Marcin;Ryl, Jacek;Siuzdak, Katarzyna;Bock, Wojtek J.;Smietana, Mateusz
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.705-710
    • /
    • 2015
  • The fabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrodes on fused silica single mode optical fiber cladding has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ℃. We have obtained homogenous, continuous and polycrystalline surface morphology with high sp3 content in B-NCD films and mean grain size in the range of 100-250 nm. The films deposited on the glass reference samples exhibit high refractive index (n=2.05 at λ=550 nm) and low extinction coefficient. Furthermore, cyclic voltammograms (CV) were recorded to determine the electrochemical window and reaction reversibility at the B-NCD fiber-based electrode. CV measurements in aqueous media consisting of 5 mM K3[Fe(CN)6] in 0.5 M Na2SO4 demonstrated a width of the electrochemical window up to 1.03 V and relatively fast kinetics expressed by a redox peak splitting below 500 mV. Moreover, thanks to high-n B-NCD overlay, the coated fibers can be also used for enhancing the sensitivity of long-period gratings (LPGs) induced in the fiber. The LPG is capable of measuring variations in refractive index of the surrounding liquid by tracing the shift in resonance appearing in the transmitted spectrum. Possible combined CV and LPG-based measurements are discussed in this work.