• 제목/요약/키워드: Cyclic temperature model

검색결과 61건 처리시간 0.023초

극저온 상태에서 AC4C-T6 의 가공 경화 모델 결정에 관한 연구 (Cyclic Stress-strain Hardening Model of AC4C-T6 Alloy at Cryogenic Temperature)

  • 이재범;김경수;이장현;유미지;정준모
    • 대한조선학회논문집
    • /
    • 제46권5호
    • /
    • pp.498-509
    • /
    • 2009
  • Present study is concerned with the simulation of plasticity models for the cyclic stressstrain behavior of aluminum alloy AC4C-T6 that can be used for primary materials of LNG cargo pump. Material model of cyclic hardening and plasticity for aluminum alloy AC4C-T6 was investigated through experiments and numerical simulations. Monotonic tensile and cyclic tension-compression test under symmetric load cycles was performed at both room temperature and cryogenic temperature of $-165^{\circ}C$. Based on the experimental data plastic hardening models were evaluated for isotropic/kinematic/combined hardening. FEA (Finite Element Analysis) models which describe the cyclic stress-strain relationship were evaluated for the simulation of plasticity. An appropriate hardening model is proposed comparing the results of FEA with those of experiments.

A Numerical Model for the Freeze-Thaw Damages in Concrete Structures

  • Cho Tae-Jun
    • 콘크리트학회논문집
    • /
    • 제17권5호
    • /
    • pp.857-868
    • /
    • 2005
  • This paper deals with the accumulated damage in concrete structures due to the cyclic freeze-thaw as an environmental load. The cyclic ice body nucleation and growth processes in porous systems are affected by the thermo-physical and mass transport properties, and gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and diffusion of chloride ion effects are hard to be identified in tests, and there has been no analytic model for the combined degradations. The main objective is to determine the driving force and evaluate the reduced strength and stiffness by freeze-thaw. For the development of computational model of those coupled deterioration, micro-pore structure characterization, pore pressure based on the thermodynamic equilibrium, time and temperature dependent super-cooling with or without deicing salts, nonlinear-fracture constitutive relation for the evaluation of internal damage, and the effect of entrained air pores (EA) has been modeled numerically. As a result, the amount of ice volume with temperature dependent surface tensions, freezing pressure and resulting deformations, and cycle and temperature dependent pore volume has been calculated and compared with available test results. The developed computational program can be combined with DuCOM, which can calculate the early aged strength, heat of hydration, micro-pore volume, shrinkage, transportation of free water in concrete. Therefore, the developed model can be applied to evaluate those various practical degradation cases as well.

리올러지 모델을 이용한 열적 기계적 변형 거동 모사 (A Description of Thermomechanical Behavior Using a Rheological Model)

  • 이금오;홍성구;이순복
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.757-764
    • /
    • 2006
  • Isothermal cyclic stress-strain deformation and thermomechanical deformation (TMD) of 429EM stainless steel were analyzed using a rheological model employing a bi-linear model. The proposed model was composed of three parameters: elastic modulus, yield stress and tangent modulus. Monotonic stress-strain curves at various temperatures were used to construct the model. The yield stress in the model was nearly same as 0.2% offset yield stress. Hardening relation factor, m, was proposed to relate cyclic hardening to kinematic hardening. Isothermal cyclic stress-strain deformation could be described well by the proposed model. The model was extended to describe TMD. The results revealed that the hi-linear thermomechanical model overestimates the experimental data under both in-phase and out-of-phase conditions in the temperature range of $350-500^{\circ}C$ and it was due to the enhanced dynamic recovery effect.

316L 스테인리스강의 상온 반복 거동에 대한 수정 다층 모델의 적용성 검토 (Applicability Evaluation of Modified Overlay Model on the Cyclic Behavior of 316L Stainless Steel at Room Temperature)

  • 임재용;이순복
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1603-1611
    • /
    • 2004
  • The validity of 'modified overlay model' to describe the cyclic behavior of annealed 316L stainless steel at room temperature was investigated. Material parameters(~f$_{i}$, m$_{i}$b, η, E) fur the model were obtained through constant strain amplitude test. The strain amplitude dependency of elastic limit and cyclic hardening, which were the characteristics of this model, were considered. Eight subelements were used to describe the nonlinearity of the hysteresis loops. The calculated hysteresis curve in each condition (0.5%, 0.7%, 0.9% train amplitude test) was very close to the experimental one. Two tests, incremental step test and 5-step test, ere performed to check the validity of 'modified overlay model'. The elastic limit was saturated to the one of the highest strain amplitudes of the block in the incremental step test, so it seemed to be Masing material at the stabilized block. Cyclic hardening was successfully described in the increasing sequence of the strain amplitude in 5-step test. But, the slight cyclic softening followed by higher strain amplitude would not be able to simulate by'modified overlay model'. However, the discrepancy induced was very small between the calculated hystereses and the experimental ones. In conclusion,'Modified overlay model'was proved to be appropriate in strain range of 0.35%~ 1.0%..0%.

유한 차분 모델을 이용한 알루미나의 열피로 수명 예측 (Thermal Fatigue Life Prediction of Alumina by Finite Difference Model)

  • 이홍림;한봉석
    • 한국세라믹학회지
    • /
    • 제30권3호
    • /
    • pp.229-235
    • /
    • 1993
  • Thermal history and thermal stress of alumina specimen, which occured from thermal shock process, were calculated by finite difference method. Stress intensity factor and crack growth in cyclic thermal fatigue were calculated from single thermal shock temperature history and thermal stress. Cyclic thermal life were estimated by bending strength after cyclic thermal shock under critical thermal shock temperature. Calculated stress intensity factor was compared with real experimental thermal fatigue life of specimen. Fatigue life until critical stress intensity factor and real experimental result were comparable.

  • PDF

429EM 스테인리스강의 고온 저주기 피로 거동 (Low Cycle Fatigue Behavior of 429EM Stainless Steel at Elevated Temperature)

  • 이금오;윤삼손;홍성구;김봉수;이순복
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.427-434
    • /
    • 2004
  • Ferritic stainless steel is recently used in high temperature structures because of its good properties of thermal fatigue resistance, corrosion resistance, and low price. Tensile and low-cycle fatigue (LCF) tests on 429EM stainless steel used in exhaust manifold were performed at several temperatures from room temperature to 80$0^{\circ}C$. Elastic Modulus, yield strength, and ultimate tensile strength monotonically decreased when temperature increased. Cyclic hardening occurred considerably during the most part of the fatigue life. Dynamic strain aging was observed in 200~50$0^{\circ}C$, which affects the cyclic hardening behavior. Among the fatigue parameters such as plastic strain amplitude, stress amplitude, and plastic strain energy density (PSED), PSED was a proper fatigue parameter since it maintained at a constant value during LCF deformation even though cyclic hardening occurs considerably. A phenomenological life prediction model using PSED was proposed considering the influence of temperature on fatigue life.

An approach for modelling fracture of shape memory alloy parts

  • Evard, Margarita E.;Volkov, Alexander E.;Bobeleva, Olga V.
    • Smart Structures and Systems
    • /
    • 제2권4호
    • /
    • pp.357-363
    • /
    • 2006
  • Equations describing deformation defects, damage accumulation, and fracture condition have been suggested. Analytical and numerical solutions have been obtained for defects produced by a shear in a fixed direction. Under cyclic loading the number of cycles to failure well fits the empirical Koffin-Manson law. The developed model is expanded to the case of the micro-plastic deformation, which accompanies martensite accommodation in shape memory alloys. Damage of a shape memory specimen has been calculated for two regimes of loading: a constant stress and cyclic variation of temperature across the interval of martensitic transformations, and at a constant temperature corresponding to the pseudoelastic state and cyclic variation of stress. The obtained results are in a good qualitative agreement with available experimental data.

Effects of cyclic mean pressure of helium gas on performance of integral crank driven stirling cryocooler

  • Hong, Yong-Ju;Ko, Junseok;Kim, Hyo-Bong;Park, Seong-Je
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권3호
    • /
    • pp.30-34
    • /
    • 2016
  • An integral crank driven Stirling cryocooler is solidly based on concepts of direct IR detector mounting on the cryocooler's cold finger, and the integral construction of the cryocooler and Dewar envelope. Performance factors of the cryocooler depend on operating conditions of the cryocooler such as a cyclic mean pressure of the working fluid, a rotational speed of driving mechanism, a thermal environment, a targeted operation temperature and etc.. At given charging condition of helium gas, the cyclic mean pressure of helium gas in the cryocooler changes with temperatures of the cold end and the environment. In this study, effects of the cyclic mean pressure of helium gas on performances of the Stirling cryocooler were investigated by numerical analyses using the Sage software. The simulation model takes into account thermodynamic losses due to an inefficiency of regenerator, a pressure drop, a shuttle heat transfer and solid conductions. Simulations are performed for the performance variation according to the cyclic mean pressure induced by the temperature of the cold end and the environment. This paper presents P-V works in the compression and expansion space, cooling capacity, contribution of losses in the expansion space.

압축 착화 기관의 연소 변동 특성에 관한 연구

  • 이창식
    • 오토저널
    • /
    • 제9권1호
    • /
    • pp.69-76
    • /
    • 1987
  • This paper deals with the theoretical prediction and cyclic variation of combustion characteristics in a four stroke, single0cylinder, diesel engine. Theoretical calculations employed a simple empirical model of analysis of energy equation for the thermodynamic system of engine cylinder. The cyclic variation of combustion characteristics is investigated, in term of frequency distribution and standard deviation of peak characteristics, as obtained by combustion analyzer system. The results of theoretical prediction are shown to be in close agreement with the experimental data. The effect of fuel injection timing, engine speed, cooling water temperature, and the compression ratio on the cyclic variations of combustion characteristics were discussed.

  • PDF

반복 일사하중에 대한 철근콘크리트 지붕슬래브의 구조적 거동 (Structural Behavior of RC Roof Slab under Cyclic Temperature Load)

  • 서수연;윤승조;조용만;최기봉
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.67-74
    • /
    • 2010
  • 철근콘크리트 지붕 슬래브에 작용하는 온도변화는 여름에는 부재를 팽창시키고 겨울에는 수축시키기 때문에 콘크리트의 응력변화를 야기시키며 이와 같은 거동은 년단위로 반복되어 사용성과 극한상태 모두에 대해서 부재의 구조성능에 영향을 미친다. 본 논문에서는 최근 20년 동안 한국의 기상변화를 분석하여 온도변화의 패턴을 계산하였으며 또한 이와 같이 장기적으로 반복되는 온도변화에 대한 영향을 실험적으로 연구하였다. 6개의 동일한 형태를 가진 철근콘크리트 슬래브를 제작하고 가력주기와 손상유무를 주 변수로 실험을 실시하였다. 실험으로부터, 1년, 10년 20년 동안의 가력기간 변화에 따른 슬래브의 강성변화에서, 여름의 경우에는 10년에서 1년 일 때의 강성과 비교하여 약 30% 정도 감소되고 겨울의 경우에는 30년 이후부터 약 31%(1년과 비교) 저하되는 것으로 나타났다. 또한 이들 손상된 RC슬래브에 대한 파괴실험을 통하여 슬래브 부재의 보유성능을 평가한 결과, 외기에 노출된 기간의 변화에 따른 슬래브 부재의 초기강성 및 최대내력의 변화는 크지 않은 것으로 나타났다. 단, 20년 이상의 반복온도하중을 받은 경우에는 항복내력이 낮아지는 경향을 보이는 것으로 나타났다.