• Title/Summary/Keyword: Cyclic stress response

Search Result 116, Processing Time 0.021 seconds

Seismic responses of a free-standing two-story steel moment frame equipped with a cast iron-mortar sliding base

  • Chung, Yu-Lin;Kuo, Kuan-Ting;Nagae, Takuya;Kajiwara, Koichi
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.245-256
    • /
    • 2019
  • An experimental study was conducted to evaluate the dynamic behavior of a free-standing frame equipped with a movable base system using cast iron and mortar as the bearing materials. The preliminary friction test indicated that a graphite layer developed on the interface and exhibited stable friction behavior. The friction coefficient ranged from 0.33 to 0.36 when the applied normal compression stress ranged from 2.6 to 5.2 MPa. The effect of the variation of normal compression stress would be small. Shaking table tests on the free-standing frame showed that rock, slide, and rock-slide responses occurred. The cumulative slide distance reached 381 mm under JMA Kobe wave excitation; however, only a few cyclic slides occurred at the same locations along the moving track. Most surfaces sustained single slides. Similar results can be observed in other shaking conditions. The insufficient cyclic sliding and significant rocking resulted in a few graphite layers on the mortar surfaces. Friction coefficients were generally similar to those obtained in the preliminary friction tests; however, the values fluctuated when the rocking became significant. The collisions due to rocking caused strong horizontal acceleration responses and resulted in high friction coefficient. In addition, the strong horizontal acceleration responses caused by the collisions made the freestanding specimen unable to reduce the input horizontal acceleration notably, even when slippage occurred. Compared with the counterpart fixed-base specimen, the specimen equipped with the iron-mortar base could reduce the horizontal acceleration amplification response and the structural deformation, whereas the vertical acceleration response was doubled due to collisions from rocking.

Fatigue Behavior Analysis of Welded Rod/Knuckle Assembly for Hydraulic Cylinder (용접이음 된 유압 실린더용 로드/너클 조립체의 피로거동 해석)

  • Rhee, Hwanwoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.93-99
    • /
    • 2013
  • Parts and structures such as piston rod and knuckle joint for the use of hydraulic cylinder are often welded together in some fashion, usually due to cost and process effectiveness. Welding strongly affects the material by the process of heating and subsequent cooling as well as by the fusion process with additional filler material. Furthermore, a weld is usually far from being perfect, containing inclusions, pores, cavities, undercuts etc. As a consequence, fatigue failures appear in welded structures mostly at the welds rather than in the base metal, even if the latter contains notches. For this reason, fatigue analyses are of high practical interest for all welded structures under the action of cyclic loads. This paper describes the influence of welding parameters, material combinations and heat treatment on the fatigue behavior of welded cylinder rod. In addition, statistical characterization of stress-life response in weldment of hydraulic cylinder rod are presented.

Experimental Test and Numerical Simulation on the SMA Characteristics and Behaviors through the Load-Training (하중 트레이닝을 통한 형상기억합금의 특성 실험과 거동 전산 모사)

  • Kim, Sang-Haun;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.700-705
    • /
    • 2007
  • In this study, we observe the application of shape memory alloy(SMA) into smart structures for repeatable actuation, because SMA changes its material properties and characteristics progressively under cyclic loading conditions and finally reaches stable path(state) after a certain number of stress/temperature loading-unloading cycles, so called 'training'. In this paper, SMA wires that have been in a stable state through the training are used. Stress-strain curve of the SMA wire at different temperature levels are measured. In addition, we observe other important effects such as the rate effect according to strain rates for rapid actuation response. The current work presents the experimental test using SMA wire after training completion by mechanical cycling. Through these tests, we measure the characteristics of SMA. With the estimated SMA properties and effects, we compare the experimental results with the simulation results based on the SMA constitutive equations.

  • PDF

Analysis of Shear Damage Behaviour of Reinforced Concrete Beams using Modified Compression Field Theory (철근콘크리트보의 전단피로손상거동에 대한 수정압축장이론을 이용한 해석기법)

  • 한승환;오병환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.552-557
    • /
    • 1997
  • In this study, a quantitative analysis technique for the damage process of reinforced concrete beams under repeated shear loading is proposed, which can express the progressively increasing strain and stiffness reduction. The analysis technique is mainly based on the modified compression field theory and scalar damage concept. which describe the strain and stress configuration in the shear zone by considering the 2-dimensional effect, and express the degradation of principal compressive strut by cyclic strain increment, secant modulus decrement, and modifying the parabolic stress strain relationship. The analysis of the response of RC beams under repeated shear-flexure loading has been carried out and compared with the experimental results. The present theory may efficiently be used to evaluate the deflection and strain accumulation under repeated loadings.

  • PDF

Experimental Test and Numerical Simulation on the SMA Characteristics and Behaviors for Repeated Actuations (반복적인 작동을 위한 형상기억합금의 특성 실험과 거동 전산 모사)

  • Kim, Sang-Haun;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.373-379
    • /
    • 2007
  • In this study, we observe the application of shape memory alloy(SMA) into smart structures for repeatable actuation, because SMA changes its material properties and characteristics progressively under cyclic loading conditions and finally reaches stable path(state) after a certain number of stress/temperature loading-unloading cycles, so called 'training'. In this paper, SMA wires that have been in a stable state through the training are used. Stress-strain curve of the SMA wire at different temperature levels are measured. In addition, we observe other important effects such as the rate effect according to strain rates for rapid actuation response. The current work presents the experimental test using SMA wire after training completion by mechanical cycling. Through these tests, we measure the characteristics of SMA. With the estimated SMA properties and effects, we compare the experimental results with the simulation results based on the SMA constitutive equations.

Prediction of terminal density through a two-surface plasticity model

  • Won, Jongmuk;Kim, Jongchan;Park, Junghee
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.493-502
    • /
    • 2020
  • The prediction of soil response under repetitive mechanical loadings remains challenging in geotechnical engineering applications. Modeling the cyclic soil response requires a robust model validation with an experimental dataset. This study proposes a unique method adopting linearity of model constant with the number of cycles. The model allows the prediction of the terminal density of sediments when subjected to repetitive changes in pore-fluid pressure based on the two-surface plasticity. Model simulations are analyzed in combination with an experimental dataset of sandy sediments when subjected to repetitive changes in pore fluid pressure under constant deviatoric stress conditions. The results show that the modified plastic moduli in the two-surface plasticity model appear to be critical for determining the terminal density. The methodology introduced in this study is expected to contribute to the prediction of the terminal density and the evolution of shear strain at given repetitive loading conditions.

Damage Detection in Fiber Reinforced Composites Containing Electrically Conductive Phases

  • Shin, Soon-Gi;Hideaki Matsubara
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.201-205
    • /
    • 2000
  • Fiber reinforced plastic (FRP) composites and ceramic matrix composites (CMC) which contain electrically conductive phases have been designed and fabricated to introduce the detection capability of damage/fracture detection into these materials. The composites were made electrically conductive by adding carbon and TiN particles into FRP and CMC, respectively. The resistance of the conductive FRP containing carbon particles showed almost linear response to strain and high sensitivity over a wide range of strains. After each load-unload cycle the FRP retained a residual resistance, which increased with applied maximum stress or strain. The FRP with carbon particles embedded in cement (mortar) specimens enabled micro-crack formation and propagation in the mortar to be detected in situ. The CMC materials exhibited not only sensitive response to the applied strain but also an increase in resistance with increasing number of load-unload cycles during cyclic load testing. These results show that it is possible to use these composites to detect and/or fracture in structural materials, which are required to monitor the healthiness or safety in industrial applications and public constructions.

  • PDF

The New Neurobiology of Depression (우울증의 새로운 신경생물학)

  • Kim, Yong Ku
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.1
    • /
    • pp.3-19
    • /
    • 2001
  • Recent basic and clinical studies demonstrate a major role for neural plasticity in the etiology and treatment of depression and stress-related illness. The neural plasticity is reflected both in the birth of new cell in the adult brain(neurogenesis) and the death of genetically healthy cells(apoptosis) in the response to the individual's interaction with the environment. The neural plasticity includes adaptations of intracellular signal transduction pathway and gene expression, as well as alterations in neuronal morphology and cell survival. At the cellular level, repeated stress causes shortening and debranching of dendrite in the CA3 region of hippocampus and suppress neurogenesis of dentate gyrus granule neurons. At the molecular level, both form of structural remodeling appear to be mediated by glucocorticoid hormone working in concert with glutamate and N-methyl-D-aspartate(NMDA) receptor, along with transmitters such as serotonin and GABA-benzodiazepine system. In addition, the decreased expression and reduced level of brain-derived neurotrophic factor(BDNF) could contribute the atrophy and decreased function of stress-vulnerable hippocampal neurons. It is also suggested that atrophy and death of neurons in the hippocampus, as well as prefrontal cortex and possibly other regions, could contribute to the pathophysiology of depression. Antidepressant treatment could oppose these adverse cellular effects, which may be regarded as a loss of neural plasticity, by blocking or reversing the atrophy of hippocampal neurons and by increasing cell survival and function via up-regulation of cyclic adenosine monophosphate response element-binding proteins(CREB) and BDNF. In this article, the molecular and cellular mechanisms that underlie stress, depression, and action of antidepressant are precisely discussed.

  • PDF

Dynamic characteristics of combined isolation systems using rubber and wire isolators

  • Lee, Seung-Jae;Truong, Gia Toai;Lee, Ji-Eon;Park, Sang-Hyun;Choi, Kyoung-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1071-1084
    • /
    • 2022
  • The present study aims to investigate the dynamic properties of a novel isolation system composed of separate rubber and wire isolators. The testing program comprised pure compressive, pure-shear, compressive-stress dependence, and shear-strain dependence tests that used full-scale test specimens according to ISO 22762-1. A total of 22 test specimens were fabricated and investigated. Among the tests, the pure compressive test was a destructive test that reached up to the failure stage, whereas the others were nondestructive tests before the failure stage. Similar to the pure-shear test, at each compressive-stress level in the compressive dependence test or at each shear-strain level in the shear-strain dependence test, the cyclic loading was conducted for three cycles. In the nondestructive tests, examination of the dynamic shear properties in the X-direction was independent of the Y-direction. The test results revealed that the increase in the shear strain increased the energy dissipation but decreased the damping ratio, whereas the increase in the compressive stress increased the damping ratio. In addition, a macro model was developed to simulate the load-displacement response of the isolation systems, and the prediction results were consistent with the experimental results.

Performance analyses of antagonistic shape memory alloy actuators based on recovered strain

  • Shi, Zhenyun;Wang, Tianmiao;Da, Liu
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.765-784
    • /
    • 2014
  • In comparison with conventional shape memory actuated structures, antagonistic shape memory alloy (SMA) actuators permits a fully reversible two-way response and higher response frequency. However, excessive internal stress could adversely reduce the stroke of the actuators under repeated use. The two-way shape memory effect might further decrease the range of the recovered strain under actuation of an antagonistic SMA actuator unless additional components (e.g., spring and stopper) are added to regain the overall actuation capability. In this paper, the performance of all four possible types of SMA actuation schemes is investigated in detail with emphasis on five key properties: recovered strain, cyclic degradation, response frequency, self-sensing control accuracy, and controllable maximum output. The testing parameters are chosen based on the maximization of recovered strain. Three types of these actuators are antagonistic SMA actuators, which drive with two active SMA wires in two directions. The antagonistic SMA actuator with an additional pair of springs exhibits wider displacement range, more stable performance under reuse, and faster response, although accurate control cannot be maintained under force interference. With two additional stoppers to prevent the over stretch of the spring, the results showed that the proposed structure could achieve significant improvement on all five properties. It can be concluded that, the last type actuator scheme with additional spring and stopper provide much better applicability than the other three in most conditions. The results of the performance analysis of all four SMA actuators could provide a solid basis for the practical design of SMA actuators.