• Title/Summary/Keyword: Cyclic shear strain

Search Result 148, Processing Time 0.021 seconds

Evolution of sandstone shear strength parameters and its mesoscopic mechanism

  • Shi, Hao;Zhang, Houquan;Song, Lei
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.29-41
    • /
    • 2020
  • It is extremely important to obtain rock strength parameters for geological engineering. In this paper, the evolution of sandstone cohesion and internal friction angle with plastic shear strain was obtained by simulating the cyclic loading and unloading tests under different confining pressures using Particle Flow Code software. By which and combined with the micro-crack propagation process, the mesoscopic mechanism of parameter evolution was studied. The results show that with the increase of plastic shear strain, the sandstone cohesion decreases first and then tends to be stable, while the internal friction angle increases first, then decreases, and finally maintains unchanged. The evolution of sandstone shear strength parameters is closely related to the whole process of crack formation, propagation and coalescence. When the internal micro-cracks are less and distributed randomly and dispersedly, and the rock shear strength parameters (cohesion, internal friction angle) are considered to have not been fully mobilized. As the directional development of the internal micro-fractures as well as the gradual formation of macroscopic shear plane, the rock cohesion reduces continuously and the internal friction angle is in the rise stage. As the formation of the macroscopic shear plane, both the rock cohesion and internal friction angle continuously decrease to a certain residual level.

The Effect of Shear Direction on the Behavior of the Post-earthquake Settlement of GBFS (반복전단 방향의 영향에 따른 GBFS의 지진후 침하 거동)

  • Baek, Won-Jin;Hiroshi, Matsuda;Park, Kyung-Hwan;Kim, Jin-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.5-12
    • /
    • 2010
  • In this study, in order to clarify the effect of the direction of cyclic shear on the post-earthquake settlement the multi-directional shear tests were carried out for Toyoura Japan standard sand, Genkai natural sand, Kaolinite and the Granulated Blast Furnace Slag (GBFS). The diameter and the height of the specimen are 75 mm and 20 mm, respectively. In a series of tests, the number of strain cycles was adjusted as n=5, 20, 30, 100, 200 and the shear strain amplitudes were varied from 0.1% to 1.0%. The relative densities of each samples were also adjusted as Dr=50, 60 and 70%. From the test results for Toyoura sand and GBFS, it is clarified that the post-earthquake settlement is relatively large at the small relative density and becomes large with the shear strain amplitude. When the influence of difference on the direction of cyclic shear decreases, the post-earthquake settlement strain for Toyoura sand is converged to a constant value, but the GBFS increases with the number of strain cycles. In addition, the post-earthquake settlement is in the order of Kaolinite > Toyoura sand > Genkai sand > GBFS.

Nonlinear Analysis of RC Shear Walls under Cyclic Loadings (반복하중을 받는 철근콘크리트 전단벽의 비선형 해석)

  • 곽효경;김도연
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.179-186
    • /
    • 2003
  • This paper describes an extension of a numerical model, which was developed to simulate the nonlinear behavior of reinforced concrete (RC) structures subject to monotonic in-plane shear. While maintaining all the basic assumptions adopted in defining the constitutive relations of concrete under monotonic loadings, a hysteretic stress-strain relation of concrete, which crosses the tension-compression region, is defined. In addition, curved unloading and reloading branches inferred from the stress-strain relation of steel considering the Bauschinger effect are used. Modifications of the stress-strain relation of concrete and steel are also introduced to reflect a pinching effect depending on the shear span ratio and to represent an average stress distribution in a cracked RC element, respectively.

  • PDF

An Estimating Method for Post-cyclic Strength and Stiffness of Eine-grained Soils in Direct Simple Shear Tests (직접단순전단시험을 이용한 동적이력 후 세립토의 강도 및 강성 예측법)

  • Song, Byung-Woong;Yasuhara, KaBuya;Murakami, Satoshi
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.15-26
    • /
    • 2004
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests proposed by one of the authors, cyclic Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from cyclic and post-cyclic DSS tests were interpreted by a modified method as adopted for cyclic and post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils and initial static shear stress (ISSS) was emphasised. Findings obtained from the present study are: (i) liquefaction strength ratio of fine-grained soils decreases with decreasing plasticity index and increasing ISSS; (ii) plasticity index and ISSS did not markedly influence relation between equivalent cyclic stiffness and shear strain relations; (iii) the higher the plasticity index of fine-grained soils is, the less the strength ratio decreases with increment of a normalcies excess pore water pressure (NEPWP); (iv) stiffness ratio of plastic silt has large activity decrease rapidly with increasing excess pore water pressure; and (v) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.

A study of dynamic peoperties in cyclic simple shear test (동적단순전단 시험기를 이용한 매립지반 거동특성에 관한 연구)

  • Kim, Sung-Jin;Ryu, Jeong-Ho;Park, Yo-Hwan;Kim, Jin-Man
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1422-1430
    • /
    • 2008
  • Cyclic simple shear test apparatus was used to investigate the dynamic response of liquefiable soils as reclamation material. The specimen were reclamation using simple air-pluviation method. The confining stress was applied the range of 100 kpa to 200 kpa. The resulted strain was in the range of $10^{-3}$ ~ 5 %. Based on these test results modulus reduction curve, damping curve and cyclic strength curve were developed. The developed curves were compared to those already available in literature. The obtained curves can be applied to FEM or equivalent linear analysis such as SHAKE for ground response analysis.

  • PDF

Investigation of the liquefaction potential of fiber-reinforced sand

  • Sonmezer, Yetis Bulent
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.503-513
    • /
    • 2019
  • In the present, the liquefaction potential of fiber-reinforced sandy soils was investigated through the energy-based approach by conducting a series of strain-controlled cyclic simple shear tests. In the tests, the effects of the fiber properties, such as the fiber content, fiber length, relative density and effective stress, and the test parameters on sandy soil improvement were investigated. The results indicated that the fiber inclusion yields to higher cumulative liquefaction energy values compared to the unreinforced (plain) ground by increasing the number of cycles and shear strength needed for the liquefaction of the soil. This result reveals that the fiber inclusion increases the resistance of the soil to liquefaction. However, the increase in the fiber content was determined to be more effective on the test results compared to the fiber length. Furthermore, the increase in the relative density of the soil increases the efficiency of the fibers on soil strengthening.

Dynamic Behavior of Unsaturated Decomposed Mudstone Soil Under Low Strain Amplitude (저변형률하 불포화 이암풍화토의 동적거동)

  • Huh, Kyung-Han;Chung, Choong-Sun;Bae, Joong-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.19-27
    • /
    • 2004
  • The interest in the dynamic properties of soils has increased strongly because of earthquake, heavy traffic, and foundations undergo high amplitude of vibrations. Most of soils in Korean peninsula are composed of granite soils, especially the decomposed mudstone soils are widely spread in Pohang areas, Kyong-buk province. Therefore, it is very important to investigate the dynamic properties of these types of soils. The most important soil parameters under dynamic loadings are shear modulus and material dampings. Furthermore, few definitive data exist that can evaluate the behavior of unsaturated decomposed mudstone soils under dynamic loading conditions. The investigations described in this paper is designed to identify the shear modulus and damping ratio due to a surface tension for the unsaturated decomposed mudstone soils under low and high strain amplitude. For this purpose, the resonant column test and the cyclic triaxial test were performed. Test results and data have shown that the optimum saturated degree of decomposed mudstone soils under low and strain amplitude is $32{\sim}37%$ which is higher than that of decomposed granite due to the amount of fine particles as well as the type and proportion of chief rock-forming minerals.

Nonlinear Analysis of RC Panels under Cyclic Loadings (반복하중을 받는 철근콘크리트 판넬의 비선형 해석)

  • 곽효경;김도연
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.182-189
    • /
    • 2000
  • This paper presents a simple and reliable constitutive model for predicting the nonlinear response of reinforced concrete subjected to general membrane loadings. Based on the concept of equivalent uniaxial strain, constitutive relations of concrete are presented in the axes of orthotropy. The behavior of cracked concrete is described by a system of orthogonal cracks, which follows the principal strain directions and rotates according to the loading history. Simple hysteretic rules defining the cyclic stress-strain curves of concrete and steel are used. In addition, the stiffness and strength degradation of cracked concrete is included in the formulation. Correlation studies between analytical results and experimental values from idealized shear panel tests are conducted with the objective to establish the validity of the proposed model.

  • PDF

Joint Shear Behavior Prediction for RC Beam-Column Connections

  • LaFave, James M.;Kim, Jae-Hong
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 2011
  • An extensive database has been constructed of reinforced concrete (RC) beam-column connection tests subjected to cyclic lateral loading. All cases within the database experienced joint shear failure, either in conjunction with or without yielding of longitudinal beam reinforcement. Using the experimental database, envelope curves of joint shear stress vs. joint shear strain behavior have been created by connecting key points such as cracking, yielding, and peak loading. Various prediction approaches for RC joint shear behavior are discussed using the constructed experimental database. RC joint shear strength and deformation models are first presented using the database in conjunction with a Bayesian parameter estimation method, and then a complete model applicable to the full range of RC joint shear behavior is suggested. An RC joint shear prediction model following a U.S. standard is next summarized and evaluated. Finally, a particular joint shear prediction model using basic joint shear resistance mechanisms is described and for the first time critically assessed.

Effect of Transverse Steel on Shear Performance for RC Bridge Columns (철근콘크리트 원형 교각의 전단성능에 대한 횡방향철근의 영향)

  • Ko, Seong Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.191-199
    • /
    • 2021
  • In seismic design, hollow section concrete columns offer advantages by reducing the weight and seismic mass compared to concrete section RC bridge columns. However, the flexure-shear behavior and spirals strain of hollow section concrete columns are not well-understood. Octagonal RC bridge columns of a small-scale model were tested under cyclic lateral load with constant axial load. The volumetric ratio of the transverse spiral hoop of all specimens is 0.00206. The test results showed that the structural performance of the hollow specimen, such as the initial crack pattern, initial stiffness, and diagonal crack pattern, was comparable to that of the solid specimen. However, the lateral strength and ultimate displacement of the hollow specimen noticeably decreased after the drift ratio of 3%. The columns showed flexure-shear failure at the final stage. Analytical and experimental investigations are presented in this study to understand a correlation confinement steel ratio with neutral axis and a correlation between the strain of spirals and the shear resistance capacity of steel in hollow and solid section concrete columns. Furthermore, shear strength components (Vc, V, Vp) and concrete stress were investigated.