• 제목/요약/키워드: Cyclic shear strain

검색결과 148건 처리시간 0.021초

Cracking behavior of RC shear walls subject to cyclic loadings

  • Kwak, Hyo-Gyoung;Kim, Do-Yeon
    • Computers and Concrete
    • /
    • 제1권1호
    • /
    • pp.77-98
    • /
    • 2004
  • This paper presents a numerical model for simulating the nonlinear response of reinforced concrete (RC) shear walls subject to cyclic loadings. The material behavior of cracked concrete is described by an orthotropic constitutive relation with tension-stiffening and compression softening effects defining equivalent uniaxial stress-strain relation in the axes of orthotropy. Especially in making analytical predictions for inelastic behaviors of RC walls under reversed cyclic loading, some influencing factors inducing the material nonlinearities have been considered. A simple hysteretic stress-strain relation of concrete, which crosses the tension-compression region, is defined. Modification of the hysteretic stress-strain relation of steel is also introduced to reflect a pinching effect depending on the shear span ratio and to represent an average stress distribution in a cracked RC element, respectively. To assess the applicability of the constitutive model for RC element, analytical results are compared with idealized shear panel and shear wall test results under monotonic and cyclic shear loadings.

해양 실트질 모래의 비배수 동적 거동에 대한 평균 및 반복전단응력의 영향 (Effect of Average and Cyclic Shear Stress on Undrained Cyclic Behavior of Marine Silty Sand)

  • 무하마드 사프다르;손수원;김진만
    • 한국지반공학회논문집
    • /
    • 제30권1호
    • /
    • pp.17-25
    • /
    • 2014
  • 해상풍력발전기의 기초는 바람, 조류, 그리고 파도 하중을 받기 때문에 해상풍력발전기 기초를 설계하는 데 있어 반복하중을 받는 기초지반의 전단거동 평가가 필요하다. 지반의 비배수 동적 전단거동은 반복하중 횟수, 수직 유효응력, 반복 전단변형률, 상대 밀도, 그리고 평균 및 반복전단응력의 조합에 영향을 받는다. 본 연구에서는 해양 실트질 모래의 비배수 동적 거동에 대한 평균 및 반복전단응력의 영향을 평가하기 위하여 반복단순전단시험(CDSS)을 수행하였으며 상대밀도 85%, 수직 유효응력 200kPa과 300kPa의 시험조건에서 15%의 이중진폭 동적전단변형률(${\gamma}_{cyc}$)과 영구전단변형률(${\gamma}_p$)를 파괴 기준으로 적용하였다. 시험결과는 설계 그래프와 등고선도로 나타내었다. 결과에 따르면 해양 실트질 모래의 비배수 동적 거동은 평균 및 반복전단응력과 두가지 전단응력의 조합에 의해 크게 변하는 경향을 보였다. 평균전단응력이 존재하는 경우에는 반복전단변형보다는 영구변형에 의해 파괴가 결정되는 것으로 나타났다.

변형률 제어 반복직접단순전단시험에서 세립분이 모래-실트 혼합토의 간극수압에 미치는 영향 (Effect of Non-Plastic Fines Content on the Pore Pressure Generation of Sand-Silt Mixture Under Strain-Controlled CDSS Test)

  • ;박성식;;박재현;성희영;손준혁;황금비
    • 한국지진공학회논문집
    • /
    • 제28권1호
    • /
    • pp.33-39
    • /
    • 2024
  • Understanding the behavior of soil under cyclic loading conditions is essential for assessing its response to seismic events and potential liquefaction. This study investigates the effect of non-plastic fines content (FC) on excess pore pressure generation in medium-density sand-silt mixtures subjected to strain-controlled cyclic direct simple shear (CDSS) tests. The investigation is conducted by analyzing excess pore pressure (EPP) ratios and the number of cycles to liquefaction (Ncyc-liq) under varying shear strain levels and FC values. The study uses Jumunjin sand and silica silt with FC values ranging from 0% to 40% and shear strain levels of 0.1%, 0.2%, 0.5%, and 1.0%. The findings indicate that the EPP ratio increases rapidly during loading cycles, with higher shear strain levels generating more EPP and requiring fewer cycles to reach liquefaction. At 1.0% and 0.5% shear strain levels, FC has a limited effect on Ncyc-liq. However, at a lower shear strain level of 0.2%, increasing FC from 0 to 10% reduces Ncyc-liq from 42 to 27, and as FC increases further, Ncyc-liq also increases. In summary, this study provides valuable insights into the behavior of soil under cyclic loading conditions. It highlights the significance of shear strain levels and FC values in excess pore pressure generation and liquefaction susceptibility.

횡하중을 받는 말뚝의 Beam-Column 해석 (A Beam-Column Analysis of Laterally Loaded Piles)

  • 백원진;이강일;이진수;김주현;송병관
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1212-1217
    • /
    • 2008
  • In this study, in order to clarify the effect of the direction of cyclic shear on the post-earthquake settlement the multi-directional shear tests were carried out for Toyoura Japan standard sand, Genkai natural sand and the Granulated Blast Furnace Slag (GBFS). In a series of tests, number of strain cycles was changed as n=5-200 and the shear strain amplitude varied from 0.1% to 1.0%. The relative density was also changed as Dr=50, 60 and 70%. From the test results for Toyoura sand and GBFS, it is clarified that the post cyclic settlement is relatively large at the small relative density and becomes large with the shear strain amplitude. When the influence of the direction of cyclic shear is decreases, the post cyclic settlement strain for Toyoura sand is converged to a constant value, but the GBFS is increased with the number of strain cycles.

  • PDF

CDSS 실험을 이용한 모래의 액상화 후 체적변형 영향인자 분석 (Analysis of Volumetric Deformation Influence Factor after Liquefaction of Sand using Cyclic Direct Simple Shear Tests)

  • 에레라 디에고;김종관;곽태영;한진태
    • 한국지반공학회논문집
    • /
    • 제40권3호
    • /
    • pp.65-75
    • /
    • 2024
  • 본 연구에서는 여러 영향 인자들이 사질토의 액상화로 인한 침하에 미치는 영향을 확인하기 위해 변형률 제어조건 하에서 반복단순직접전단시험을 수행하였다. 누적 전단 변형률, 상대밀도, 반복 하중의 형태, 시료 준비 방법 등의 다양한 인자들을 선정하였으며, 지진 하중이 발생하였을 때 인자들이 지반 침하에 미치는 영향을 분석하였다. 시험 결과, 누적 전단 변형률이 낮고 상대밀도가 높은 시료에서 더 작은 부피 변형이 발생하였다. 추가적으로 반복하중의 진폭은 부피 변형에 영향을 미쳤으나, 주파수는 시료의 부피 변형에 영향을 미치지 않는다는 사실을 확인할 수 있었다. 시료 준비 방법에 따라서도 액상화에 따른 침하가 다른 양상을 보인다는 사실을 확인하였으며, 이와 같은 결과들은 향후 액상화로 인한 침하 예측을 수행할 때 기초 연구로써 의미가 있을 것으로 기대된다.

실트 함유율에 따른 낙동강 모래의 반복전단거동 (Undrained Cyclic Shear Behavior for Nak-Dong River Sand Due to Silt contents)

  • 김영수;김대만;신지섭;나윤영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.311-317
    • /
    • 2008
  • This study was carried out to improve our understanding about the influence of silt content on the stress-strain of sand under cyclic loading. Soil specimens were prepared by wet-tamping method as same void ratio and specimen's silt contents on total weights was changed from 0% to 20%. Also, effects of the silt contents on the stress-strain response were studied at different anisotropic consolidation ratio, Kc=1.0, 1.5, 2.0 condition. As a result, cyclic shear strength decreased as silt contents increased in same stress ratios. In same silt contents, cyclic shear strength increased as Kc increased in lower silt contents, but in higher silt contents, it had reverse results.

  • PDF

Energy-based evaluation of liquefaction potential of uniform sands

  • Sonmezer, Yetis Bulent
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.145-156
    • /
    • 2019
  • Since behaviors of loose, dense, silty sands vary under seismic loading, understanding the liquefaction mechanism of sandy soils continues to be an important challenges of geotechnical earthquake engineering. In this study, 36 deformation controlled cyclic simple shear tests were performed and the liquefaction potential of the sands was investigated using three different relative densities (40, 55, 70%), four different effective stresses (25, 50, 100, 150 kPa) and three different shear strain amplitudes (2, 3.5, 5%) by using energy based approach. Experiments revealed the relationship between per unit volume dissipated energy with effective stress, relative density and shear strain. The dissipate energy per unit volume was much less affected by shear strain than effective stress and relative density. In other words, the dissipated energy is strongly dependent on relative density and effective stress. These results show that the dissipated energy per unit volume is very useful and may contain the non-uniform loading conditions of the earthquake spectrum. When multiple regression analysis is performed on experiment results, a relationship is proposed that gives liquefaction energy of sandy soils depending on relative density and effective stress parameters.

Unidirectional cyclic shearing of sands: Evaluation of three different constitutive models

  • Oscar H. Moreno-Torres;Cristhian Mendoza-Bolanos;Andres Salas-Montoya
    • Geomechanics and Engineering
    • /
    • 제35권4호
    • /
    • pp.449-464
    • /
    • 2023
  • Advanced nonlinear effective stress constitutive models are started to be frequently used in one-dimensional (1D) and two-dimensional (2D) site response analysis for assessment of porewater generation and liquefaction potential in soft soil deposits. The emphasis of this research is on the assessment of the implementation of this category of models at the element stage. Initially, the performance of a coupled porewater pressure (PWP) and constitutive models were evaluated employing a catalogue of 40 unidirectional cyclic simple shear tests with a variety of relative densities between 35% and 80% and effective vertical stresses between 40 and 80 kPa. The authors evaluated three coupled constitutive models (PDMY02, PM4SAND and PDMY03) using cyclic direct simple shear tests and for decide input parameters used in the model, procedures are recommended. The ability of the coupled model to capture dilation as strength is valuable because the studied models reasonably capture the cyclic performance noted in the experiments and should be utilized to conduct effective stress-based 1D and 2D site response analysis. Sandy soils may become softer and liquefy during earthquakes as a result of pore-water pressure (PWP) development, which may have an impact on seismic design and site response. The tested constitutive models are mathematically coupled with a cyclic strain-based PWP generation model and can capture small-strain stiffness and large-strain shear strength. Results show that there are minor discrepancies between measured and computed excess PWP ratios, indicating that the tested constitutive models provide reasonable estimations of PWP increase during cyclic shear (ru) and the banana shape is reproduced in a proper way indicating that dilation and shear- strain behavior is well captured by the models.

비등방 압밀 모래의 반복 전단강도 (Cyclic Shear Strength of Anisotropically Consolidated Snnd)

  • Kim, Byung-Tak;Kim, Young-Su;Seo, In-Shik;Jeong, Dong-Gil
    • 한국지반공학회논문집
    • /
    • 제18권3호
    • /
    • pp.73-85
    • /
    • 2002
  • 본 논문에서는 비등방 압밀된 낙동강 포화모래의 비배수 반복 전단강도 거동이 연구되었으며, 등방압밀된 시료의 반복삼축시험은 비등방 압밀시료와의 비교를 위하여 수행되었다. 초기 정적 전단음력과 상대밀도의 다양한 조합하에 반복 전단강도는 고찰되었다. 음력반전과 비응력반전 모두에 대하여 반복하중을 받는 시료의 파괴는 5%의 양진폭변형율과 5%의 잔류축변형율로서 정의하였다. 비등방 압밀된 시료의 반복 전단강도는 초기 정적 전단강도에 영향을 받는 것으로 나타났다. 비등방 압밀 낙동강 모래의 반복 전단강도는 Toyoura 실리카 모래의 전단강도 보다는 크지만, Dogs Bay 카보나이트 모래의 전단강도 보다는 작게 나타났다. 실험결과와 예측결과의 비교에 의하면, 낙동강 모래의 잔류 간극수압에 대한 Hyodo 모델의 적용성이 입증되었다.

An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays

  • Cheng, Xinglei;Wang, Jianhua
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.325-343
    • /
    • 2016
  • A total stress-based bounding surface model is developed to predict the undrained behaviour of saturated soft clays under cyclic loads based on the anisotropic hardening modulus field and bounding-surface theories. A new hardening rule is developed based on a new interpolation function of the hardening modulus that has simple mathematic expression and fewer model parameters. The evolution of hardening modulus field is described in the deviatoric stress space. It is assumed that the stress reverse points are the mapping centre points and the mapping centre moves with the variation of loading and unloading paths to describe the cyclic stress-strain hysteresis curve. In addition, by introducing a model parameter that reflects the accumulation rate and level of shear strain to the interpolation function, the cyclic shakedown and failure behaviour of soil elements with different combinations of initial and cyclic stresses can be captured. The methods to determine the model parameters using cyclic triaxial compression tests are also studied. Finally, the cyclic triaxial extension and torsional shear tests are performed. By comparing the predictions with the test results, the model can be used to describe undrained cyclic stress-strain responses of elements with different stress states for the tested clays.