• Title/Summary/Keyword: Cyclic flow

Search Result 212, Processing Time 0.024 seconds

Alterations in Cerebrovascular Reactivity by Trigeminovascular System Injury in Rats

  • Park Sang June;Choi Chang Hwa;Lee Won Suk
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.211-219
    • /
    • 2005
  • Trigeminovascular system plays an important role for the cerebral memodynamics. The aim of this study was to investigate the alterations in cerebrovascular reactivity by trigeminovascular system injury in rats. Trigeminovascular system of male Sprague-Dawley rats was injured by either denervation of nasocilliary nerve or neonatal capsaicin treatment. Trigeminovascular system was stimulated by controlled hemorrhagic hypotension or somatosensory (whisker) stimulation. Changes in regional cerebral blood flow (rCBF) and pial arterial diameter were continuously measured by laser-Doppler flowmetry and videomicroscopy, respectively. Nitric oxide synthase (NOS) activity in cerebral cortex was determined by measuring the conversion of $L-^3H-arginine\;to\;L-^3H-citrulline$. Cyclic GMP levels in cerebral cortex and pial artery were determined using the cyclic GMP $^{125}I$ scintillation proximity assay system. rCBF autoregulation was impaired or almost abolished by trigeminovascular system injury. rCBF response to whisker stimulation was significantly attenuated by trigeminovascular system injury. NOS activity as well as cyclic GMP level in cerebral cortex and pial artery were significantly reduced in the group of trigeminovascular system injury. These results suggest that trigeminovascular system injury causes prominent alterations in cerebrovascular reactivity, and that NO, which is generated by neuronal NOS in the trigeminovascular system, is implicated in the regulation of rCBF.

  • PDF

The Comparison of Collapsible Characteristics on Decomposed Granite Soil and Loess (풍화 화연토와 loess의 붕괴특성 비교)

  • 도덕현
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.7-14
    • /
    • 1986
  • The structure of the collapsible soils, such as decomposed granite soil and loess, were examined by the odeometer test, SEM & XES analysis and static & cyclic triaxial test, and hove this structure have influences upon the collapsible behaviour under static and cyclic load was investigated. The study results obtained are as follows; 1. The macropores space of decomposed granite soil (rd=1.50g/cm3) and loess (rd=1.43g/cm3) used in this test were well developed, and showed the behaviour of collapsible soil. 2. Collapsible soil has high resistance on the strain under natural moisture content, however, the resistance on the strain was sharply decreased by the absorption and increasing load since its special structure was destructed. 3. Under the static load, the strain of collapsible soil was high by the viscous flow of the cyclic bonds with time lapse, but Infer the cyclic load, the strain of collapsible soil was low since the tinge needed to destruct the bonding force of clay was not enough. 4. The understanding about the cyclic behaviour of collapsible soil may be helpful to predict the elastic & residual strain of the foundations by the earthquake together with the damage by the additional failure.

  • PDF

Compressor Cascade Flow Analysis by Using Upwind Flux Difference Splitting Method (풍상차분법을 이용한 압축기 익렬유동 해석)

  • 권창오;송동주;강신형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.653-661
    • /
    • 1994
  • In this paper the CSCM type upwind flux difference splitting Navier-Stokes method has been applied to study the ARL-SL19 supersonic/transonic compressor cascade flow. H-type grid was chosen for its simplicity in applying cyclic tridiagonal matrix algorithm along with conventional slip/no-slip boundary conditions. The thin-layer algebraic model of Baldwin-Lomax was employed for the calculation of turbulent flows. The test case inlet Mach No. was 1.612 and inlet/exit pressure ratio($P_2/P_1$) was 2.15. The results were compared with experimental results from current method were compared well in suction surface with the experiments and other computational results; however, not well in pressure surface. It might be due to the complex flowfields such as shock/boundary layer interaction, turbulence, and flow separation, etc. In the future, a proper turbulence modelling and adaptive grid system will be studied to improve the solution quality.

Design and Application of Forced Cooling System in Steam Turbine (증기터빈 강제냉각 장치의 설계 및 적용)

  • 김효진;류승우;강용호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.25-32
    • /
    • 1998
  • The forced cooling system is designed to shorten the overhaul time of steam turbine, which is important in view of economic concern of utility companies, Forced cooling of the hot turbine is achieved by suction of air flow into the turbine after the turbine shuts down. The heat transfer process by suction of air flow can cause thermal stress due to the thermal gradients. In this paper, the analysis of heat transfer is performed to calculate the air flow rate. Based on the prediction of cyclic fatigue damage and the experience, the cooling equipment is designed for shortening the cooling time of steam turbine.

  • PDF

Evaluation of Liquefaction Potentional on Saturated Sand Layers in Korea (on the Development of Constitutive Relationships) (우리나라 포화사질지반의 액상화 포텐셜 평가 (구함관계 개발을 중심으로))

  • 도덕현;장병욱
    • Geotechnical Engineering
    • /
    • v.6 no.3
    • /
    • pp.41-52
    • /
    • 1990
  • To investigate the liquefaction potential of sands, a series of untrained cyclic triaxial compression tests is carried out on the samples of Ottawa, Joomoonjin, Hn river and Hongseung sands. The constitutive equations of sands are derived to explain the mechanical behavior of sands under cyclic stresses, and are applicable to liquefaction analysis. The following results are obtainded in this study. 1. Sands with the lower confining pressure or relative density are to be easily liquefied, and when the amplitude of cyclic stress are large, liquefaction takes places over only a few cycles. 2. Stress ratio, porewater pressure ratio and cyclic shear strains are to be good criteria to evaluate liquefaction potential of sands. 3. Hongseung sands which contains some silty clay shows higher dynamic properties than other sands. 4. The dynamic behaviors of undisturbed Hongseung sand are about same as those of dense sands. It is noted that undisturbed Hongseung sand shows higher liquefaction potential than the samples made by pluviation under same relative density, 5. The constitutive equations of soils under cyclic loads are developed based on the theory of elasto-plasticity, logarithmic stress-strain rela'tionship, non-associated flow rule and the concept of the boundary surface. The derived equations is applicable to predict the behavior of sands under cyclic loads and liquefaction potential with a higher accuracy. 6. Based on results of the study it may be concluded that cracks of the foundations and dislocation of the structures at Hongseung earthquakes(Oct. 7, 1978, Richter scald 5.2) are not brought by the liquefaction process.

  • PDF

Cyclic Capilary Electrophoresis Separator on Silicon Substrate with Synchronized Switching (실리콘 기판 위에서 구현된 회전형 전기영동분리기)

  • Jeong, Yong-Won;Kim, Bong-Hwan;Lee, Jun-Yeop;Cho, Gyeong-Yeon;Chang, Jun-Geun;Chun, Guk-Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.11
    • /
    • pp.640-648
    • /
    • 2000
  • We have developed a synchronously switched cyclic capillary electrophoresis (CE) separator that is fabricated on a silicon substrate and glass containing reservoirs, Au electrode, and isolated channels. The advantage of a cyclic separator is the high resolution and ability to separate each sample to the designated reservoir from mixed samples. This approach makes it possible to reduce the supplied voltage and the total size. Another goal of this work is to introduce the methodolgy of electroosmosis flow(EOF) to silicon substrate and to separate DNA samples using a modified double-T injector.

  • PDF

Effect of Cyclic Injection on Migration and Trapping of Immiscible Fluids in Porous Media (공극 구조 내 교차 주입이 비혼성 유체의 포획 및 거동에 미치는 영향)

  • Ahn, Hyejin;Kim, Seon-ok;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.37-48
    • /
    • 2019
  • In geological $CO_2$ sequestration, the behavior of $CO_2$ within a reservoir can be characterized as two-phase flow in a porous media. For two phase flow, these processes include drainage, when a wetting fluid is displaced by a non-wetting fluid and imbibition, when a non-wetting fluid is displaced by a wetting fluid. In $CO_2$ sequestration, an understanding of drainage and imbibition processes and the resulting NW phase residual trapping are of critical importance to evaluate the impacts and efficiencies of these displacement process. This study aimed to observe migration and residual trapping of immiscible fluids in porous media via cyclic injection of drainage-imbibition. For this purpose, cyclic injection experiments by applying n-hexane and deionized water used as proxy fluid of $scCO_2$ and pore water were conducted in the two dimensional micromodel. The images from experiment were used to estimate the saturation and observed distribution of n-hexane and deionized water over the course drainage-imbibition cycles. Experimental results showed that n-hexane and deionized water are trapped by wettability, capillarity, dead end zone, entrapment and bypassing during $1^{st}$ drainage-imbibition cycle. Also, as cyclic injection proceeds, the flow path is simplified around the main flow path in the micromodel, and the saturation of injection fluid converges to remain constant. Experimental observation results can be used to predict the migration and distribution of $CO_2$ and pore water by reservoir environmental conditions and drainage-imbibition cycles.

Analysis of Interrelationship between Undrained Static and Cyclic Shear Behavior for Nak-Dong River Sand (낙동강 모래의 비배수 정적 및 반복 전단거동 상호관계 분석)

  • Kim, Dae-Man;Kim, Byung-Tak
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.151-163
    • /
    • 2006
  • This paper presents the interrelationship between undrained static and cyclic shear behavior. Laboratory works were performed through the undralned static and cyclic triaxial test using Nak-Dong River sand. And static triaxial test involved the triaxial extension test for comparison with cyclic shear behavior Cyclic triaxial test was performed with a variety of combination conditions of initial static shear stress $(q_{st})$ and cyclic stress $(q_{cy})$. In this result, the stress path of cyclic shear behavior was correspondent with static shear behavior passing the critical stress ratio (CSR) line because of the development of flow deformation. After that, a failure occurred according to failure line (FL) of static shear behavior. The stress path of cyclic shear behavior showed essentially the same with static shear behavior, although it appears a little different in test method.

Electrochemical Oxidation of Carbon Felt for Redox Flow Battery (Redox flow battery용 carbon felt 전극의 전기화학적 산화)

  • Jung, Young-Guan;Hwang, Gab-Jin;Kim, Jae-Chul;Ryu, Cheol-Hwi
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.721-727
    • /
    • 2011
  • All vanadium redox-flow battery (VRFB) has been studied actively as one of the most promising electrochemical energy storage systems for a wide rage of applications such as electric vehicles, photovoltaic arrays, and excess power generated by electric power plants at night time. In this study, carbon felt electrodes were treated by electrochemical oxidation with KOH, and the cyclic voltammetry were studied in order to investigate redox reactivity of vanadium ion species with carbon felt electrodes. Besides the effect of electrochemical oxidation on the surface chemistry of carbon felt electrodes were investigated using the X-ray photoelectron spectroscopy (XPS). After electrochemical oxidation, XPS analysis of PAN based GF20-3 carbon felt electrode revealed on increase in the overall surface oxygen content of the carbon felts after electrochemical oxidation. Redox reaction characteristics using cyclic voltammetry (CV) were ascertained that the electrochemical treated electrode were more reversible than the untreated electrode.

Time-synchronized measurement and cyclic analysis of ultrasound imaging from blood with blood pressure in the mock pulsatile blood circulation system (박동 혈액 순환 모의 시스템에서 시간 동기화된 혈압 및 혈액의 초음파 영상 측정 및 주기적 분석)

  • Min, Soohong;Jin, Changzhu;Paeng, Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.361-369
    • /
    • 2017
  • Hemodynamic information in the carotid artery bifurcation is very important for understanding the development and progression mechanisms of cerebrovascular disease and for its early diagnosis and prediction of the progress. In this paper, we constructed a mock pulsatile blood circulation system using an anthropomorphic elastic vessel of the carotid artery bifurcation and ex vivo pig blood to acquire ultrasound images from blood and vessels synchronized with internal pressure while controlling the blood flow. Echogenicity, blood flow velocity, and blood vessel wall motion from the ultrasound images, and internal blood pressure were extracted over a cycle averaged from five cycles when the pulsatile pump rates are 20 r/min, 40 r/min, and 60 r/min. As a result, respectively, the peak systolic blood flow velocities were 20 cm/s, 25 cm/s, and 40 cm/s, the blood pressure differences were 30 mmHg, 70 mmHg, and 85 mmHg, the arterial walls were expanded to 0.05 mm, 0.15 mm, and 0.25 mm. Time-delayed cyclic variation of echogenicity compared to blood flow and pressure was observed, but the variation was minimal at 20 r/min. Time-synchronized cyclic variations of these parameters are important information for accurate input parameters and validation of the computational hemodynamic experiments which will provide useful information for the development and progress mechanisms of carotid artery stenosis.