• Title/Summary/Keyword: Cyclic fatigue resistance

Search Result 74, Processing Time 0.02 seconds

A Study on Fatigue Crack Propagation Behavior of Pressure Vessel Steel SA516/70 at High Temperature. (압력용기용 SA516/70 강의 고온피로균열 진전거동에 대한 연구)

  • 박경동;김정호;윤한기;박원조
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.147-153
    • /
    • 2000
  • The fatigue crack propagation behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, $150^{\circ}C$, $250^{\circ}C$ and $370^{\circ}C$ with stress ratio of R=0.1 and 0.3. The fatigue crack propagation rate da/dN related with the stress intensity factor range $\Omega\textrm{K}$ was influenced by the stress ratio within the stable growth of fatigue crack(Region II) with an increase in $\Omega\textrm{K}$. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and high temperatures are mainly explained by the crack closure and oxide-induced by high temperature.

  • PDF

A Study on Fatigue Crack propagation Behavior of Pressure Vessel Steel SA516/70 at High Temperature (압력용기용 SA516/70 강의 고온피로균열 진전거동에 대한 연구)

  • 박경동;김정호;윤한기;박원조
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.105-110
    • /
    • 2001
  • The fatigue crack propagation behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, 150$^{\circ}C $, 250$^{\circ}C $ and 370$^{\circ}C $ with stress ratio of R=0.1 and 0.3. The fatigue crack propagation rate da/dN related with the stress intensity factor range $\Delta K$ was influenced by the stress ratio within the stable growth of fatigue crack(Region II) with an increase in $\Delta K$. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and high temperature are mainly explained by the crack closure and oxide-induced by high temperature.

  • PDF

Low cycle fatigue properties of hydrogenated welding sheets of Zr-Sn-Nb alloy using funnel-shaped flat specimens

  • Lian-feng, Wei;Chen, Bao;Shi-zhong, Wang;Yong, Zheng;Meng-bin, Zhou
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1724-1731
    • /
    • 2020
  • Low cycle fatigue tests on the hydrogenated welding seam of Zr-Sn-Nb alloy at room temperature and 360 ℃ had been carried out by using the funnel-shaped flat specimens. The relationships between nominal stress & strain directly measured across the funnel and local stress & strain at the root of the funnel are given by considering cyclic plasticity correction. The results show that the fatigue resistance of welding seam at room temperature is only slightly better than that at 360 ℃. Probabilistic fatigue life curves are obtained by using a two-parameter power function.

Effect of Internal Stress on Cyclic Fatigue Failure in ProTaper Universal (ProTaper Universal에 축적된 내부 응력이 피로 파절에 미치는 영향)

  • Jo, Yun-Sung;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.1
    • /
    • pp.57-66
    • /
    • 2012
  • The purpose of this study was to evaluate the relation between intentionally induced internal stress and cyclic fatigue failure of ProTaper Universal. ProTaper Universal (Dentsply Maillefer) S1, S2, F1, F2, F3, F4 and F5 (25 mm length) were used in this study. To give the internal stress, the ProTaper Universal were put into the .02 taper Endo-Training-Bloc (Dentsply Maillefer) until auto-stop by torque controlled motor. The rotation speed was 300 rpm and torque value was 1.0 Ncm. ProTaper Universal were grouped by the induced number of internal stress and randomly distributed among one control group and three experimental groups (n=10). The four groups were Stress 0 (control), Stress 1, Stress 2 and Stress 3. These instruments were rotated until separation. For cyclic fatigue measurement, inclined plane was used and time for separation was recorded. It was statistically analyzed using two-way ANOVA and Duncan post-hoc test at 95% confidential level. In all ProTaper Universal, there was statistically significant decrease on time for separation in Stress 3. In F2 and F3, there were statistically significant difference between control group and all experimental groups. And in F4 and F5, Stress 2 and 3 groups showed significantly lower cyclic fatigue resistance from Stress 0 group. In the limitation of this study, cyclic fatigue failure of ProTaper Universal is influenced by accumulated internal stress.

Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading

  • Im, So-Min;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.22-30
    • /
    • 2017
  • PURPOSE. The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr-Co metal mesh-reinforced maxillary complete dentures under fatigue loading. MATERIALS AND METHODS. Glass fiber mesh- and Cr-Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy. RESULTS. After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture (P<.05) and the control group (P<.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces. CONCLUSION. The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair.

EFFECT OF SURFACE DEFECTS AND CROSS-SECTIONAL CONFIGURATION ON THE FATIGUE FRACTURE OF NITI ROTARY FILES UNDER CYCLIC LOADING (전동식 니켈 티타늄 파일의 표면 결함 및 단면 형태가 반복응력 하에서 피로 파절에 미치는 영향)

  • Shin, Yu-Mi;Kim, Eui-Sung;Kim, Kwang-Man;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.3
    • /
    • pp.267-272
    • /
    • 2004
  • The purpose of this in vitro study was to evaluate the effect of surface defects and cross-sectional configuration of NiTi rotary files on the fatigue life under cyclic loading. Three NiTi rotary files ($K3^{TM},{\;}ProFile^{\circledR},{\;}and{\;}HERO{\;}642^{\circledR}$) with #30/.04 taper were evaluated. Each rotary file was divided into 2 subgroups : control (no surface defects) and experimental group (artificial surface defects), A total of six groups of each 10 were tested. The NiTi rotary files were rotated at 300rpm using the apparatus which simulated curved canal (40 degree of curvature) until they fracture. The number of cycles to fracture was calculated and the fractured surfaces were observed with a scanning electron microscope. The data were analyzed statistically. The results showed that experimental groups with surface defects had lower number of cycles to fracture than control group but there was only a statistical significance between control and experimental group in the $K3^{TM}$ (p<0.05), There was no strong correlation between the cross-sectional configuration area and fracture resistance under experimental conditions. Several of fractured files demonstrated characteristic patterns of brittle fracture consistent with the propagation of pre-existing cracks. This data indicate that surface defects of NiTi rotary files may significantly decrease fatigue life and it may be one possible factor for early fracture of NiTi rotary files in clinical practice.

Evaluation of high temperature tensile behavior and LCF properties of stainless steel for turbine disks (터빈 디스크용 스테인리스강의 고온 인장 및 저주기 피로 물성 측정)

  • Im, H.D.;Park, C.K.;Lee, K.;Rhim, S.H.;Kim, C.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.334-337
    • /
    • 2007
  • Austenitic stainless steel is used as high temperature components such as gas turbine blade and disk because of its good thermal resistance. In the present investigation, tensile and low cycle fatigue(LCF) behavior of stainless steel for turbine disks was studied at wide temperature range $20^{\circ}C\;{\sim}\;750^{\circ}C$. In the tensile tests, it was shown that elastic modulus, yield strength, ultimate tensile strength decreased when temperature increased. The effect on fatigue failure of the parameters such as plastic strain amplitude, stress amplitude and plastic strain energy density was also investigated. Coffin-Manson and Morrow models were used to adjust experimental data and predict the fatigue life behavior at different mean strain values during cyclic loading of high temperature components.

  • PDF

Effects of Non-Woven Tissue on the Mechanical Behavior of Angle-Ply Laminates (부직포가 예각 적층판의 기계적 거동에 미치는 효과)

  • 정성균
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.109-115
    • /
    • 2001
  • This paper investigates the mechanical characteristics of angle-ply laminates with non-woven carbon tissue. The lami- nates were made by inserting non-woven carbon tissue at the interface. Specimens were rounded near the tabs by grinding and polishing to reduce the stress concentration. Cyclic loads were applied to the specimens and the stress and fatigue life curves were obtained. The matrix crack density was also evaluated to check the effects of non-woven carbon tissue on the fracture resistance of composite laminates. C-Sean technique was used to evaluate the delamination, and SEM was used to understand the fracture mechanisms of the laminates. Experimental results show that the fatigue strength and life of composite laminates were increased by inserting non- woven carbon tissues. The results also show that the matrix crack density and delamination area were reduced by inserting non-woven carbon tissues.

  • PDF

Effect of laser shock peening and cold expansion on fatigue performance of open hole samples

  • Rubio-Gonzalez, Carlos;Gomez-Rosas, G.;Ruiz, R.;Nait, M.;Amrouche, A.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.867-880
    • /
    • 2015
  • Mechanical fastening is still one of the main methods used for joining components. Different techniques have been applied to reduce the effect of stress concentration of notches like fastener holes. In this work we evaluate the feasibility of combining laser shock peening (LSP) and cold expansion to improve fatigue crack initiation and propagation of open hole specimens made of 6061-T6 aluminum alloy. LSP is a new and competitive technique for strengthening metals, and like cold expansion, induces a compressive residual stress field that improves fatigue, wear and corrosion resistance. For LSP treatment, a Q-switched Nd:YAG laser with infrared radiation was used. Residual stress distribution as a function of depth was determined by the contour method. Compact tension specimens with a hole at the notch tip were subjected to LSP process and cold expansion and then tested under cyclic loading with R=0.1 generating fatigue cracks on the hole surface. Fatigue crack initiation and growth is analyzed and associated with the residual stress distribution generated by both treatments. It is observed that both methods are complementary; cold expansion increases fatigue crack initiation life, while LSP reduces fatigue crack growth rate.

Fatigue resistance, debonding force, and failure type of fiber-reinforced composite, polyethylene ribbon-reinforced, and braided stainless steel wire lingual retainers in vitro

  • Foek, Dave Lie Sam;Yetkiner, Enver;Ozcan, Mutlu
    • The korean journal of orthodontics
    • /
    • v.43 no.4
    • /
    • pp.186-192
    • /
    • 2013
  • Objective: To analyze the fatigue resistance, debonding force, and failure type of fiber-reinforced composite, polyethylene ribbon-reinforced, and braided stainless steel wire lingual retainers in vitro. Methods: Roots of human mandibular central incisors were covered with silicone, mimicking the periodontal ligament, and embedded in polymethylmethacrylate. The specimens (N = 50), with two teeth each, were randomly divided into five groups (n = 10/group) according to the retainer materials: (1) Interlig (E-glass), (2) everStick Ortho (E-glass), (3) DentaPreg Splint (S2-glass), (4) Ribbond (polyethylene), and (5) Quad Cat wire (stainless steel). After the recommended adhesive procedures, the retainers were bonded to the teeth by using flowable composite resin (Tetric Flow). The teeth were subjected to 10,00,000 cyclic loads (8 Hz, 3 - 100 N, $45^{\circ}$ angle, under $37{\pm}3^{\circ}C$ water) at their incisoproximal contact, and debonding forces were measured with a universal testing machine (1 mm/min crosshead speed). Failure sites were examined under a stereomicroscope (${\times}40$ magnification). Data were analyzed by one-way analysis of variance. Results: All the specimens survived the cyclic loading. Their mean debonding forces were not significantly different (p > 0.05). The DentaPreg Splint group (80%) showed the highest incidence of complete adhesive debonding, followed by the Interlig group (60%). The everStick Ortho group (80%) presented predominantly partial adhesive debonding. The Quad Cat wire group (50%) presented overlying composite detachment. Conclusions: Cyclic loading did not cause debonding. The retainers presented similar debonding forces but different failure types. Braided stainless steel wire retainers presented the most repairable failure type.