• Title/Summary/Keyword: Cyclic Voltammetry.

Search Result 1,025, Processing Time 0.027 seconds

Electrochemical Reduction for trans-Complexes of Cobalt (III) with Bis(ethylenediamine) and Monodendate Ligands (한자리 리간드를 포함하는 트란스비스 (에틸렌디아민) 코발트 (III) 이온의 전극 환원반응)

  • Jung-Ui Hwang;Jong-Jae Chung;Jae-Duck Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.215-224
    • /
    • 1989
  • Electrochemical reductions of $trans-[Co(en)_2X_2](ClO_4)_n$ (where X is cyanide, nitrite, ammonia, and isothiocyanate) were investigated by cyclic voltammetry and polarography at mercury and glassy carbon electrode. $trans-[Co(en)_2(CN)_2]ClO_4$ was reduced to Co(II) complex followed by adsorption to the mercury electrode. Cyanide ion was not released from the reduced Co(II) complex but the cyanide and (en) were released after the reduction to metallic cobalt. The other complexes except $trans-[Co(en)_2(CN)_2]ClO_4$ were reduced to cobalt(II) complexes followed by release of monodendate ligand, and (en) was released at the reduction step to metallic cobalt. $trans-[Co(en)_2(NO_2)_2]ClO_4$ was reduced to cobalt(Ⅱ) complex, and $NO_2^-$ ion was released followed by electroreduction through ECE mechanism at pH 2. On glassy carbon electrode, all complexes of Co(III) were reduced to Co(II) complexes with irreversible one-electron diffusion controlled reaction in which (en) was not released at this step. Increasing absorption wave number of complexes caused to negative shift of peak potential.

  • PDF

Studies on the Spectrophotometric Determination, Electrochemical Behavior of Heavy Lanthanide ions in Nonaqueous System and Heavy Chelates Complexes with Bidendate Ligands (Ⅱ) Electrochemical Behavior of Heavy Lanthanide Ions in Acetonitrile (무거운 란탄이온의 분광학적 정량, 비수용액에서의 전기화학적 거동 및 중금속이온과 두자리 리간드 착물에 관한 연구 (제 2 보))

  • Kang Sam-Woo;Park Chong-Min;Kim Il-Kwang;Do Lee-Mi;Lee Jong-Min
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.5
    • /
    • pp.483-490
    • /
    • 1993
  • Voltammetric behavior of heavy lanthanide ions has been investigated by the DC, DPP and CV in acetonitrile solution. The reduction of $Gd^{3+}, Tb^{3+}, Dy^{3+}, Ho^{3+}, Er^{3+}, Tm^{3+} 및 Lu^{3+} proceed by three-electron change to the metallic state with totally irreversibility in 0.1M tetraethylammonium perchlorate. However, the reduction of Yb(Ⅲ) proceeds in two steps $(Yb^{3+} + e^- \Leftrightarrow Yb^{2+} and Yb^{2+} + 2e^- → Yb^0)$. The first reduction of Yb(Ⅲ) showed quasi reversible behavior, but the second reduction was irreversible in cyclic voltammetry. The cathodic peak current showed adsorptive properties in high concentration with lower sweep rate. The electroreduction of heavy lanthanides in water-acetonitrile mixture has been studied. In water-acetonitrile mixture, the negative shift of the peak potential and the decrease peak current were observed increasing water concentration. Also the Yb(Ⅲ) reduction to Yb(Ⅲ) has been deviated from quasi-reversible character with increase water amount. These results drive from the high solvation abilities of water which has high donor number.

  • PDF

Synthesis of Pt-$MoO_3$ Electrode by Electrodeposition Method for Direct Methanol Fuel Cell (전기화학적 증착법에 의한 직접 메탄올 연료전지(DMFC)용 백금-삼산화몰리브테늄 전극제조)

  • Shin, Ju-Kyung;Jung, So-Mi;Baeck, Sung-Hyeon;Tak, Yong-Suk
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.435-439
    • /
    • 2010
  • Pt-$MoO_3$ electrodes were fabricated on ITO-coated glass by electrodeposition method using 20 mM hydrogen hexachloroplatinate ($H_2PtCl_6$) and 10 mM Mo-peroxo electrolyte. Deposition order was varied, and catalytic activities of synthesized electrodes were compared with that of pure Pt electrode. Scanning Electron Microscopy (SEM) was utilized to examine surface morphology. The crystallinity of synthesized films was analyzed by X-ray Diffraction (XRD), and the oxidation state of both the platinum and molybdenum were determined by X-ray Photoelectron Spectroscopy (XPS) analyses. The catalytic activity and stability for methanol oxidation were measured using cyclic voltammetry (CV) and chronoamperometry (CA) in a mixture of 0.5 M $H_2SO_4$ and 0.5 M $CH_3OH$ aqueous solution. $MoO_3$ electrodeposited on the surface of Pt showed much higher catalytic acitivity and stability than pure Pt electrode due to the good contact between Pt and $MoO_3$.

Development of GDH-glucose Sensor using Ferrate Complex (철 화합물을 이용한 당 탈수소화 효소-혈당센서의 연구)

  • Choi, Young-Bong;Lee, Jung-Min;Kim, Samantha Saeyoung;Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.30-36
    • /
    • 2014
  • Redox complexes to transport electrons from enzyme to electrodes are very important part in glucose sensor. Pentacyanoferrate-bound aniline ($Fe(CN)_5$-aminopyridine), was prepared as a potential redox mediator in a glucose dehydrogenase (GDH)-glucose sensor. The synthesized pyridyl-$NH_2$ to pentacyanoferrate was characterized by the electrochemical and spectroscopic methods. A amperometric enzyme-linked electrode was developed based on GDH, which catalyses the oxidation of glucose. Glucose was detected using GDH that was co-immobilized with an $Fe(CN)_5$-aminopyridine and gold nano-particles (AuNPs) on ITO electrodes. The $Fe(CN)_5$-aminopyridine and AuNPs immobilized onto ITO electrodes provided about a two times higher electrochemical response compared to that of a bare ITO electrode. As glucose was catalyzed by wired GDH, the electrical signal was monitored at 0.4 V versus Ag/AgCl by cyclic voltammetry. The anode currents was linearly increased in proportion to the glucose concentration over the 0~10 mM range.

Electrochemical Characteristics of Ultra Battery Anode Material using the Nano Pb/AC for ISG (나노 납/활성탄을 사용한 ISG용 울트라 전지 음극소재의 전기화학적 특성)

  • Hwang, Jin Ung;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.593-599
    • /
    • 2017
  • In order to enhance ultra battery performances, the electrochemical characteristics of nano Pb/AC anode composite was investigated. Through nano Pb adsorption onto activated carbon, nano Pb/AC was synthesized and it was washed under vacuum process. The prepared anode materials was analysed by SEM, BET and EDS. The specific surface area and average pore size of nano Pb/AC composite were $1740m^2/g$ and 1.95 nm, respectively. The negative electrode of ultra battery was prepared by nano Pb/AC dip coating on lead plate. The electrochemical performances of ultra battery were studied using $PbO_2$ (the positive electrode) and prepared nano Pb/AC composite (the negative electrode) pair. Also the electrochemical behaviors of ultra battery were investigated by charge/discharge, cyclic voltammetry, impedance and rate capability tests in 5 M $H_2SO_4$ electrolyte. The initial capacity and cycling performance of the present nano Pb/AC ultra battery were improved with respect to the lead battery and the AC-coated lead battery. These experimental results indicate that the proper addition of nano Pb/AC into the negative electrode can improve the discharge capacity and the long term cycle stability and remarkably suppress the hydrogen evolution reaction on the negative electrode.

Application of Porous Carbon Catalyst Activating Reaction of Positive Electrode in Vanadium Redox Flow Battery (바나듐 레독스 흐름전지의 양극반응 활성화를 위한 다공성 탄소 촉매의 적용)

  • Jeong, Sanghyun;Chun, Seung-Kyu;Lee, Jinwoo;Kwon, Yongchai
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.150-156
    • /
    • 2014
  • In this study, we implemented a research for improving performance of redox flow battery (RFB) via enhancing reaction rate of vanadium reaction ($[VO]^{2+}/[VO_2]^+$) that was a rate determining step. For doing that, porous catalyst, CMK3 was employed and its perfoamance was compared with that of Vulcan(XC-72) and commercial Pt/C (Johnson-Matthey Pt 20wt.%). Cyclic voltammetry (CV) was used for inspecting reactivity, while its structural feature was measured by TEM and BET&BJH. Also, Charge-discharge trend was evaluated by single cell tests. As result, CMK3 showed 6 times better catalytic activity and twice better reversibility than Vulcan(XC-72), while it showed larger surface area than Vulcan XR due to its porous structure. Furthermore, CMK3 indicated 85% of reactivity and reversibility of commercial Pt/C despite its Pt-less situation. In single cell tests, when RFB adopted CMK3 as catalyst for positive electrode, its charge-discharge curve result was better than that adopted commercial Pt/C.

Electrochemical Performance of Hollow Silicon/Carbon Anode Materials for Lithium Ion Battery (리튬이차전지용 Hollow Silicon/Carbon 음극소재의 전기화학적 성능)

  • Jung, Min Ji;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.444-448
    • /
    • 2016
  • Hollow silicon/carbon (H-Si/C) composites as anode materials for lithium ion batteries were investigated to overcome the large volume expansion. H-Si/C composites were prepared as follows; hollow $SiO_2\;(H-SiO_2)$ was prepared by adding $NaBH_4$ to $SiO_2$ synthesized using $st{\ddot{o}}ber$ method followed by magnesiothermic reduction and carbonization of phenolic resin. The H-Si/C composites were analyzed by XRD, SEM, BET and EDX. To improve the capacity and cycle performance, the electrochemical characteristics of H-Si/C composites synthesized with various $NaBH_4$ contents were investigated by charge/discharge, cycle, cyclic voltammetry and impedance tests. The coin cell using H-Si/C composite ($SiO_2:NaBH_4=1:1$ in weight) in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC : DMC : EMC = 1 : 1 : 1 vol%) has better capacity (1459 mAh/g) than those of other composition coin cells. It is found that the coin cell ($SiO_2:NaBH_4=1:1$ in weight) has an excellent capacity retention from 2nd cycle to 40th cycle.

Platinum complex oxide electrode catalyst for the solubilization of sewage sludge (하수슬러지 가용화 위한 백금족 복합 산화물 촉매 전극 개발)

  • Yoo, Jaemin;Kim, Hyunsook;pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.352-360
    • /
    • 2016
  • The purpose of this study was to determine the electrochemical properties develop DSA electrode for sewage sludge solubilization. Using Ir as a main catalyst, the catalyst selected for the sewage sludge solubilization durability and proceeds to functional electrode suitable for sewage sludge electrolysis experiment were obtained the following results. Less mass reduction of the sintering temperature of the main catalyst, Ir coated electrodes, the endothermic reaction zone $300^{\circ}C$ to $500^{\circ}C$, which was selected from a range of experiments. The efficiency of the catalyst results came up to $350^{\circ}C$ best. Each Binder stars (Ta, Sn, W) in this experiment was the biggest catalyst efficiency at $350^{\circ}C$. Used as a binder, $TaCl_5$, $SnCl_4$, $WCl_6$ of the Ta and without affecting the other characteristics of the main catalyst than Sn, W. For the 50% $IrO_2$ electrode is 1.4 V (vs. Ag / AgCl) in a current of about $29mA/cm^2$ was caused to evaluate the effectiveness of the electrode.

Electrochemical Characteristics of Supercapacitor Based on Amorphous Ruthenium Oxide In Aqueous Acidic Medium (비정질 루테늄 산화물을 사용한 수계 Supercapacitor의 전기화학적 특성)

  • Choi, Sang-Jin;Doh, Chil-Hoon;Moon, Seong-In;Yun, Mun-Su;Yug, Gyeong-Chang;Kim, Sang-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • A supercapacitor was developed using an amorphous ruthenium oxide material. The electrode of supercapacitor was prepared using an amorphous ruthenium oxide, which was synthesized from ruthenium trichloide hydrate$(RuCl_3{\cdo5}xH_2O)$. Thin film of tantalum was used as a current collector because it had wide. potential window characteristics than titanium and 575304 materials. A supercapacitor was assembled with ruthenium oxide as an electrode active material and 4.8M sulfuric acid solution as an electrolyte. The specific capacitance of the electrode was tested by a cyclic voltammetry using a half cell. The maximum differential specific capacitances during the oxidative and the reductive scans were 710 and $645\;F/g-RuO_2{\cdot}nH_2O$, respectively. The average specific capacitance was $521\;F/g-RuO_2{\cdot}nH_2O$. The assembled supercapacitor was protonated to the potential level of 0.5V vs. SCE. Super-capacitor, which was adjusted to the appropriate protonation level, had the specific capacitance of $151\;F/g-RuO_2{\cdot}nH_2O$ based on the concept of full cell.

Preparation of Solid Polymer Electrolytes by Ultraviolet Radiation and the Electrochemical Properties of Activated Carbon Supercapacitor Adopting Them (자외선 조사에 의한 고체 고분자 전해질의 제조와 이를 채용한 활성탄 수퍼커패시터의 전기화학적 특성)

  • Won, Jung Ha;Kim, Yong Joo;Lee, Young-Gi;Kim, Kwang Man;Kim, Jong Huy;Ko, Jang Myoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.91-97
    • /
    • 2013
  • Solid polymer electrolyte films are prepared by ultraviolet radiation in the mixtures of an ionic liquid salt (1-ethyl-3-methylimidazolium tetrafluoroborate, $EMIBF_4$) and solvent (acetonitrile (ACN) or propylene carbonate(PC)), and an oligomer (poly(ethylene glycol)diacrylate, PEGDA, 45-60 wt.%). Electrochemical properties of activated carbon supercapacitors adopting the solid polymer electrolyte films as a separator are also examined by cyclic voltammetry and impedance measurement techniques. As a result, the supercapacitor adopting the PEGDA as much as 45 wt.% exhibits a superior capacitance of $46Fg^{-1}$ at $20mVs^{-1}$. It seems that this is due to fast kinetics of ion conduction by sufficient film flexibility, which can be allowed by comparatively weak ultraviolet curing of small anount of the PEGDA.