• Title/Summary/Keyword: Cyclic Voltammetry.

Search Result 1,025, Processing Time 0.022 seconds

The Analysis on the Activation Procedure of Polymer Electrolyte Fuel Cells

  • Jang, Jong-Mun;Park, Gu-Gon;Sohn, Young-Jun;Yim, Sung-Dae;Kim, Chang-Soo;Yang, Tae-Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.131-135
    • /
    • 2011
  • It is, in general, believed that during the activation process, the proton conductivity increases due to wetting effect and the electrochemical resistance reduction, resulting in an increase in the fuel cell performance with time. However, until now, very scant information is available on the understanding of activation processes. In this study, dominant variables that effect on the performance increase of membrane electrode assemblies (MEAs) during the activation process were investigated. Wetting, pore restructuring and active metal utilization were analyzed systematically. Unexpectedly, the changes for both ohmic and reaction resistance characterized by the electrochemical impedance spectroscopy (EIS) after initial wetting process were much smaller when considering the degree of cell performance increases. However, the EIS spectra represents that the pore opening of electrode turns into gas transportable structure more easily. The increase in the performance with activation cycles was also investigated in a view of active metals. Though the particle size was grown, the number of effective active sites might be exposed more. The impurity removal and catalytic activity enhancement measured by cyclic voltammetry (CV) could be a strong evident. The results and analysis revealed that, not merely wetting of membrane but also restructuring of electrodeand catalytic activity increase are important factors for the fast and efficient activation of the polymer electrolyte fuel cells.

Non-Enzymatic Glucose Sensor Based on a Copper Oxide Nanoflowers Electrode Decorated with Pt Nanoparticles (백금 나노입자가 분산된 3차원 산화구리 나노구조체 기반의 글루코스 검출용 비효소적 전기화학 센서 개발)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.705-710
    • /
    • 2018
  • An electrochemical glucose sensor with enzyme-free was fabricated using Pt nanoparticles (Pt NPs) decorated CuO nanoflowers (CuO NFs). 3-D CuO nanoflowers film was directly synthesized on Cu foil by a simple hydrothermal method and Pt NPs were dispersed on the petal surface of CuO NFs through electrochemical deposition. This prepared sample was noted to Pt NPs-CuO NF. Morphology of the Pt NPs-CuO NFs layer was analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The electrochemical properties and sensing performances were investigated using cyclic voltammetry (CV) and chronoamperometry (CA) under alkaline condition. The sensor exhibited a high sensitivity, wide liner range and fast response time. Its excellent sensing performance was attributed to the synergistic effect of the Pt NPs and CuO nanostructure.

Electrocatalytic Effect on the Oxygen Reduction and Electrochemical Properties of Co(Ⅱ)-dimethyl Bipyridine Perchlorate (Co(Ⅱ)$(dimethyl bipyridine)_3(ClO_4)_2$의 전기화학적 성질과 산소환원에 대한 전극 촉매 효과)

  • Kim, Il Kwang;Park, Chong Sool;Han, Wan Soo;Kim, Youn Keun;Jeon, Il Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.8
    • /
    • pp.385-391
    • /
    • 1997
  • Diffusion Coefficient$(D_0)$ and electrode reaction rate Constant$(K_0)$ of Co$(dimethyl bipyridine)_3(ClO_4)_2$ were determined by cyclic voltammetry and chronoamperometry. It was also investigated that the effects of solvent, concentration, and scan rate, etc. on the diffusion coefficient and the temperature effect on the rate constant. The peak currents and diffusion coefficients were dcreased as increasing the viscosity of solvent. Diffusion coefficient was $5.54{\times}10^{-6 }cm^2/sec$ and the reaction rate constant was $2.39{\times}10^{-3 }/s$ at 25$^{\circ}C$. The thermodynamic parameters such as ${\Delta}G^{\neq},\;{\Delta}H^{\neq},\;and\;{\Delta}S$ were calculated from plotting the reaction rate constants versus the solution temperatures. This compound was shown the catalytic effect on the oxygen reduction that the reduction peak current of oxygen was greatly enhanced and the peak potential was shifted to +0.2 volt.

  • PDF

Novel Extended π-Conjugated Dendritic Zn(II)-porphyrin Derivatives for Dye-sensitized Solar Cell Based on Solid Polymeric Electrolyte: Synthesis and Characterization

  • Kang, Min-Soo;Oh, Jae-Buem;Roh, Soo-Gyun;Kim, Mi-Ra;Lee, Jin-Kook;Jin, Sung-Ho;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.33-40
    • /
    • 2007
  • We have designed and synthesized three Zn(II)-porphyrin derivatives, such as Zn(II) porphyrin ([G-0]Zn-P1) and aryl ether-typed dendron substituted Zn(II)-porphyrin derivatives ([G-1]Zn-P1 and [G-1]Zn-P-CN1). Their chemical structures were characterized by 1H-NMR, FT-IR, UV-vis absorption, EI-mass, and MALDI-TOF mass spectroscopies. Their electrochemical properties were studied by cyclic voltammetry measurement. These Zn(II)-porphyrin derivatives have been used to fabricate dye-sensitized solar cells (DSSCs) based on solid polymeric electrolytes as dye sensitizers and their device performances were evaluated by comparing with that of a standard Ru(II) complex dye. [G-1]Zn-P-CN1 showed the enhanced power conversion efficiency than those of other porphyrin derivatives, as expected. Short-circuit photocurrent density (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficiency (η) of solid-typed DSSC for [G-1]Zn-P-CN1 were evaluated to be Jsc = 11.67 mA/cm2, Voc = 0.51 V, FF = 0.46, and η = 2.76%, respectively.

Fabrication of nickel nanoparticles-embedded carbon particles by solution plasma in waste vegetable oil

  • Pansuwan, Gun;Phuksawattanachai, Surayouth;Kerdthip, Kraiphum;Sungworawongpana, Nathas;Nounjeen, Sarun;Anantachaisilp, Suranan;Kang, Jun;Panomsuwan, Gasidit;Ueno, Tomonaga;Saito, Nagahiro;Pootawang, Panuphong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.894-898
    • /
    • 2016
  • Solution plasma is a unique method which provides a direct discharge in solutions. It is one of the promising techniques for various applications including the synthesis of metallic/non-metallic nanomaterials, decomposition of organic compounds, and the removal of microorganism. In the context of nanomaterial syntheses, solution plasma has been utilized to produce carbon nanoparticles and metallic-carbon nanoparticle systems. The main purpose of this study was to synthesize nickel nanoparticles embedded in a matrix of carbon particles by solution plasma in one-step using waste vegetable oil as the carbon source. The experimental setup was done by simply connecting a bipolar pulsed power generator to nickel electrodes, which were submerged in the waste vegetable oil. Black powders of the nickel nanoparticles-embedded carbon (NiNPs/Carbon) particles were successfully obtained after discharging for 90 min. The morphology of the synthesized NiNPs/Carbon was investigated by a scanning electron microscope, which revealed a good dispersion of NiNPs in the carbon-particle matrix. The X-ray diffraction of NiNPs/Carbon clearly showed the co-existence of crystalline Ni nanostructures and amorphous carbon. The crystallite size of NiNPs (through the Ni (111) diffraction plane), as calculated by the Scherrer equation was found to be 64 nm. In addition, the catalytic activity of NiNPs/Carbon was evaluated by cyclic voltammetry in an acid solution. It was found that NiNPs/Carbon did not show a significant catalytic activity in the acid solution. Although this work might not be helpful in enhancing the activity of the fuel cell catalysts, it is expected to find application in other processes such as the CO conversion (by oxidation) and cyclization of organic compounds.

Electrochemical Behaviour of (2,4-difluoro-phenyl)-(2-phenyl-1H-quinolin-4-ylidene)-amine in Aprotic Media (비양자성 매개물에서 (2, 4-difluoro-phenyl)-(2-phenyl-1H-quinolin-4-ylidene)-amine의 전기화학적 반응)

  • Kumari, Mamta;Sharma, D.K.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.50-56
    • /
    • 2011
  • The electrochemical reduction of (2,4-difluoro-phenyl)-(2-phenyl-1H-quinolin-4-ylidene)-amine was investigated in 0.1 M tetrabutylammoniumbromide in N,N-dimethylformamide at glassy carbon electrode (GCE) using the technique of cyclic voltammetry at the room temperature (290 K). The reduction of imines occurs in two successive steps, involving one electron in each. In this medium the first peak was observed at about -0.793 V (vs Ag/$Ag^+$) at the glassy carbon electrode surface, which is more stable and well defined as compared to the second peak. The diffusion coefficient ($D_0$) of imine in the investigated solvent media has been calculated using the modified Randles-Sevcik equation. The electron transfer coefficient ($\alpha$) of the reactant species has also been calculated.

Novel Cationic 2-Phenylpyridine-based Iridium(III) Complexes Bearing an Ancillary Phosphine Ligand: Synthesis, Photophysics and Crystal Structure

  • Ma, Ai-Feng;Seo, Hoe-Joo;Jin, Sung-Ho;Yoon, Ung-Chan;Hyun, Myeong-Ho;Kang, Sung-Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2754-2758
    • /
    • 2009
  • Three novel phosphorescent 2-phenylpyridine-based iridium(III) complexes, $[(ppy)_2Ir(P\^{}N)]PF6\;(1),\;[(dfppy)_2Ir(P\^{}N)]PF_6$ (2), and $[(dfmppy)_2 Ir(P\^{}N)]PF6$ (3), where $P\^{}N$ = 2-[(diphenylphosphino)methyl]pyridine (dppmp), were synthesized and characterized. The absorption, photoluminescence, cyclic voltammetry and thermal stability of the complexes were investigated. The complexes showed bright blue luminescences at wavelengths of 448 $\sim$ 500 nm at room temperature in $CHCl_3$ and revealed that the $\pi$-acceptor ability of the phosphorous atom in the ancillary dppmp ligand plays an important role in tuning emission color resulting in a blue-shift emission. The single crystal structure of $[(dfmppy))_2Ir(P\^N)]PF_6$ was determined using X-ray crystallography. The iridium metal center adopts a distorted octahedral structure coordinated to two dfmppy and one dppmp ligand, showing cis C-C and trans N-N chelate dispositions. There is a $\pi-\pi$ overlap between π electrons delocalized in the difluorophenyl rings.

Highly Efficient Red Emissive Heteroleptic Cyclometalated Iridium(III) Complexes Bearing Two Substituted 2-Phenylquinoxaline and One 2-Pyrazinecarboxylic Acid

  • Sengottuvelan, Nallathambi;Yun, Seong-Jae;Kim, Dae-Young;Hwang, In-Hye;Kang, Sung Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.167-173
    • /
    • 2013
  • A series of highly efficient red phosphorescent heteroleptic iridium(III) complexes 1-6 containing two cyclometalating 2-(2,4-substitued phenyl)quinoxaline ligands and one chromophoric ancillary ligand were synthesized: (pqx)$_2Ir$(mprz) (1), (dmpqx)$_2Ir$(mprz) (2), (dfpqx)$_2Ir$(mprz) (3), (pqx)$_2Ir$(prz) (4), (dmpqx)$_2Ir$(prz) (5), (dfpqx)$_2Ir$(prz) (6), where pqx = 2-phenylquinoxaline, dfpqx = 2-(2,4-diflourophenyl)quinoxaline, dmpqx = 2-(2,4-dimethoxyphenyl)quinoxaline, prz = 2-pyrazinecarboxylate and mprz = 5-methyl-2-pyrazinecarboxylate. The absorption, emission, electrochemical and thermal properties of the complexes were evaluated for potential applications to organic light-emitting diodes (OLEDs). The structure of complex 2 was also determined by single-crystal X-ray diffraction analysis. Complex 2 exhibited distorted octahedral geometry around the iridium metal ion, for which 2-(2,4-dimethoxyphenyl)quinoxaline N atoms and C atoms of orthometalated phenyl groups are located at the mutual trans and cis-positions, respectively. The emission spectra of the complexes are governed largely by the nature of the cyclometalating ligand, and the phosphorescent peak wavelengths can be tuned from 588 to 630 nm with high quantum efficiencies of 0.64 to 0.86. Cyclic voltammetry revealed irreversible metal-centered oxidation with potentials in the range of 1.16 to 1.89 V as well as two quasi-reversible reduction waves with potentials ranging from -0.94 to -1.54 V due to the sequential addition of two electrons to the more electron-accepting heterocyclic portion of two distinctive cyclometalated C^N ligands.

The Electrocatalytic Reduction of Dioxygen by Bis-Cobalt Phenylporphyrins in Alkaline Solution (알칼리 수용액에서 Bis-Cobalt Phenylporphyrin 유도체들에 의한 산소의 전극 촉매적 환원)

  • Yong-Kook ChoI;Hyun-Ju Moon;Seung-Won Jeon;Ki-Hyung Chjo
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.4
    • /
    • pp.462-469
    • /
    • 1993
  • The electrocatalytic reduction of dioxygen is investigated by cyclic voltammetry and chronoamperometry at glassy carbon electrode and carbon microelectrode coated with a variety of cobalt phenylporphyrins. The n value obtained at carbon microelectrode is slightly different from that determined at glassy carbon electrode. Dioxygen reduction catalyzed by the monormeric porphyrin Co(II)-TPP mainly occurs through the $2e^-$ reduction pathway resulting in the formation of hydrogen peroxide, electrocatalytic process carries out $4e^-$ reduction pathway of dioxygen to $H_2O$ at the electrodes coated with bis-cobalt phenylporphyrins. The electrocatalytic reduction of dioxygen is irreversible and diffusion controlled.

  • PDF

Synthesis and Oxygen Reduction Reaction Characteristics of Multi-Walled Carbon Nanotubes Supported PtxM(1-x) (M = Co, Cu, Ni) Alloy Catalysts for Polymer Electrolyte Membrane Fuel Cell (다중벽 탄소 나노 튜브에 담지한 PtxM(1-x)(M = Co, Cu, Ni) 합금촉매의 제조 및 고분자 전해질 연료전지에서 산소환원 특성)

  • Jung, Dong-Won;Park, Soon;Ahn, Chi-Yeong;Choi, Seong-Ho;Kim, Jun-Bom
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.667-673
    • /
    • 2009
  • The electrocatalytic characteristics of oxygen reduction reaction of the $PtxM_{(1-x)}$ (M = Co, Cu, Ni) supported on multi-walled carbon nanotubes (MWNTs) have been evaluated in a Polymer Electrolyte Membrane Fuel Cell (PEMFC). The $Pt_xM_{(1-x)}$/MWNTs catalysts with a Pt : M atomic ratio of about 3 : 1 were synthesized and applied to the cathode of PEMFC. The crystalline structure and morphology images of the $Pt_xM_{(1-x)}$ particles were characterized by X-ray diffraction and transmission electron microscopy, respectively. The results showed that the crystalline structure of the Pt alloy particles in Pt/MWNTs and $Pt_xM_{(1-x)}$/MWNTs catalysts are seen as FCC, and synthesized $Pt_xM_{(1-x)}$ crystals have lattice parameters smaller than the pure Pt crystal. According to the electrochemical surface area (ESA) calculated with cyclic voltammetry analysis, $Pt_{0.77}Co_{0.23}$/MWNTs catalyst has higher ESA than the other catalysts. The evaluation of a unit cell test using Pt/MWNTs or $Pt_xM_{(1-x)}$/MWNTs as the cathode catalysts demonstrated higher cell performance than did a commercial Pt/C catalyst. Among the MWNTs-supported Pt and $Pt_xM_{(1-x)}$ (M = Co, Cu, Ni) catalysts, the $Pt_{0.77}Co_{0.23}$/MWNTs shows the highest performance with the cathode catalyst of PEMFC because they had the largest ESA.