• Title/Summary/Keyword: Cyclic Test

Search Result 1,714, Processing Time 0.025 seconds

Experimental Investigation on the Energy Dissipation of Friction-type Reinforcing Members Installed in a Transmission Tower for Wind Response Reduction (송전철탑의 풍응답 감소를 위한 마찰형 보강기구의 에너지 소산특성 분석 실험)

  • Park, Ji-Hun;Moon, Byoung-Wook;Lee, Sung-Kyung;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.568-577
    • /
    • 2007
  • Friction-type reinforcing members (FRM) to enhance the resistance to wind loads of a transmission tower through both stiffness strengthening and damping increase are energy dissipation devices that utilize bending deflection of a tower leg. In this paper, the hysteretic behavior of the transmission tower structure with FRMs was experimentally investigated through cyclic loading tests on a half scale substructure model. Firstly, the variation of friction forces and durability of the FRM depending on the type of Friction-inducing materials used in the FRM were examined by performing the cyclic loading tests on the FRM. Secondly, Cyclic loading tests of a half-scale two-dimensional substructure model of a transmission tower with FRMs were conducted. Test results show that the FRM, of which desired maximum friction force is easily regulated by adjusting the amplitude of the torque applied to the bolts, have stable hysteretic behaviors and it is found that there exists the optimum torque depending on a design load by investigating the amount of energy dissipation of the FRMs according to the increase of torque.

  • PDF

The Influence of Temperature on Low Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel (I) - Monotonic and Cyclic Behavior - (냉간 가공된 316L 스테인리스강의 저주기 피로 거동에 미치는 온도의 영향 (I) - 인장 및 반복 거동 -)

  • Hong, Seong-Gu;Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.333-342
    • /
    • 2004
  • Tensile and low cycle fatigue (LCF) tests on prior cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650$^{\circ}C$. At all test temperatures, cold worked material showed the tendency of higher strength and lower ductility compared with those of solution treated material. The embrittlement of material occurred in the temperature region from 300$^{\circ}C$ to 600$^{\circ}C$ due to dynamic strain aging. Following initial cyclic hardening for a few cycles, cycling softening was observed to dominate until failure occurred during LCF deformation, and the cyclic softening behavior strongly depended on temperature and strain amplitude. Non-Masing behavior was observed at all test temperatures and hysteresis energy curve method was employed to describe the stress-strain hysteresis loops at half$.$life. The prediction shows a good agreement with the experimental results.

Behaviour of a plane joint under horizontal cyclic shear loading

  • Dang, Wengang;Fruhwirt, Thomas;Konietzky, Heinz
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.809-823
    • /
    • 2017
  • This paper describes lab test results of artificial rock-like material samples having a plane joint. Cyclic shear tests were performed under different normal loads and different shear displacement amplitudes. For this purpose, multi-stage normal loading tests (30 kN, 60 kN, 90 kN, 180 kN, 360 kN and 480 kN) with cyclic excitation at frequency of 1.0 Hz and different shear displacement amplitudes (0.5 mm, 1.0 mm, 2.0 mm, 4.0 mm, 5.0 mm, and 8.0 mm) were conducted using the big shear box device GS-1000. Experimental results show, that shear forces increase with the increase of normal forces and quasi-static friction coefficient is larger than dynamic one. With the increase of normal loads, approaching the peak value of shear forces needs larger shear displacements. During each cycle the normal displacements increase and decrease (rotational behavior in every cycle). Peak angle of inclination increases with the increase of normal load. A phase shift between maximum shear displacement and maximum shear force is observed. The corresponding time shift decreases with increasing normal load and increases with increasing shear displacement amplitudes.

Cyclic behavior of FRP - crumb rubber concrete - steel double skin tubular columns and beams

  • Li, Danda;Hassanli, Reza;Su, Yue;Zhuge, Yan;Ma, Xing
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.649-661
    • /
    • 2021
  • This paper presents experimental and analytical studies to understand the behavior of crumb rubber concrete (CRC)-filled fiber reinforced polymer (FRP) and steel tube double skin column (DSC) and beam (DSB) members under cyclic loading. The main test variable was the percentage of rubber which ranged from 0 to 40%. For column members, different heights corresponding to different aspect ratios were examined to understand the to understand the effect of DSCs' slenderness on the cyclic response of the columns. the. The behavior of the specimens in terms of failure mode, strain development, energy dissipation, load-displacement response were presented and compared. The ability of the current provisions of the Australian codes to predict the capacity of such double skin members was also evaluated based on the test results. This study concluded that the reduction in the concrete strength was more severe at the material level compared to structural level. Also, as the load changed from axial compression in columns to pure moment in beams the negative effect of rubber percentage on the strength became less significant.

Migration of fine granular materials into overlying layers using a modified large-scale triaxial system

  • Tan Manh Do;Jan Laue;Hans Mattsson;Qi Jia
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.359-370
    • /
    • 2024
  • The primary goal of this study is to evaluate the migration of fine granular materials into overlying layers under cyclic loading using a modified large-scale triaxial system as a physical model test. Samples prepared for the modified large-scale triaxial system comprised a 60 mm thick gravel layer overlying a 120 mm thick subgrade layer, which could be either tailings or railway sand. A quantitative analysis of the migration of fine granular materials was based on the mass percentage and grain size of migrated materials collected in the gravel. In addition, the cyclic characteristics, i.e., accumulated axial strain and excess pore water pressure, were evaluated. As a result, the total migration rate of the railway sand sample was found to be small. However, the total migration rate of the sample containing tailings in the subgrade layer was much higher than that of the railway sand sample. In addition, the migration analysis revealed that finer tailings particles tended to be migrated into the upper gravel layer easier than coarser tailings particles under cyclic loading. This could be involved in significant increases in excess pore water pressure at the last cycles of the physical model test.

Characteristics of the Cyclic Hardening in Low Cycle Environmental Fatigue Test of CF8M Stainless Steel (CF8M 스테인리스 강 저주기 환경피로 실험의 주기적 변형률 경화 특성)

  • Jeong, Il-Seok;Ha, Gak-Hyun;Kim, Tae-Ryong;Jeon, Hyun-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.177-185
    • /
    • 2008
  • Low-cycle environmental fatigue tests of cast austenitic stainless steel CF8M at the condition of fatigue strain rate 0.04%/sec were conducted at the pressure and temperature, 15MPa, $315^{\circ}C$ of a operating pressurized water reactor (PWR). The used test rig was limited to install an extensometer at the gauge length of the cylindrical fatigue specimen inside a small autoclave. So the magnet type LVDT#s were used to measure the fatigue displacement at the specimen shoulders inside the high temperature and high pressure water autoclave. However, the displacement and strain measured at the specimen shoulders is different from the one at the gauge length for the geometry and the cyclic strain hardening effect. Displacement of the fatigue specimen gauge length calculated by FEM (finite element method) used to modify the measured displacement and fatigue life at the shoulders. A series of low cycle fatigue life tests in air and PWR conditions simulating the cyclic strain hardening effect verified that the FEM modified fatigue life was well agreed with the simulating test results. The process and method developed in this study for the environmental fatigue test inside the small sized autoclave would be so useful to produce reliable environmental fatigue curves of CF8M stainless steel in pressurized water reactors.

Evaluation of Fretting Wear Damage of Electronic Connectors for the Automotive (자동차용 전장 커넥트 프레팅 마모 손상 평가)

  • Jang, SeungGyu;Kim, Deokhyeon;Kim, Jinsang;Choi, SungJong;Cho, HyunDeog
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.33-41
    • /
    • 2014
  • Fretting is a kind of surface degradation mechanism observed in mechanical components and structures. When two pieces of materials, pressed together by an external static load, are subjected to a transverse cyclic loading or various vibrations, so that one contacting face is relatively displaced cyclically parallel to the other face, wear of the mating surfaces occurs. These fretting damages may be observed in electrical connectors for automotive components, where there are special environments and various vibration conditions. This study aims to evaluate the usefulness of fretting test equipment that was developed for reliability test of electrical connector. Fretting tests were carried out using tin coated connectors and friction force, contact resistance, contact area and roughness of contact region were investigated. The following results that will be helpful to understand the fretting wear mechanism, increase process the contact resistance and contact area were obtained. (1) In the same frequency and slip amplitude, the friction force, roughness and contact area increased rapidly until about $10^3$ cycles, after which it was slightly changed. (2) In the various frequency and slip amplitude, the contact area increased with slip amplitude and cyclic numbers, but it did not depend on cyclic frequency. (3) The surface roughness of contact region did not depend on the cyclic frequency. From these results, the applicability of the fretting wear test equipment and reliability of connector were discussed.

Prediction for Liquefaction and Lateral Flow on Non-plastic Silt (비소성실트지반의 액상화 및 측방유동량 예측)

  • Yang, Taeseon;Song, Byungwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.65-70
    • /
    • 2011
  • It is well known all much information for evaluation on possibility of liquefaction and lateral flow for sand over the world. Recently, it is started to be known that liquefaction happens on non-plastic silt, too. But cyclic and post-cyclic characteristics for non-plastic silt is a few familiar to the world. Specially, it is not aware of the estimating method for lateral flow on non-plastic silt. The main purpose in this paper is to propose the evaluation for liquefaction and lateral flow on non-plastic silt. The method used in this research is that possibility for liquefaction on non-plastic silt was evaluated with cyclic direct simple shear test, and then residental strength was estimated with static shear test. Through the test results liquefaction on non-plastic silt is well not happened but strength decreases rapidly with increasing shear stress. With the proposed method it can be evaluated possibility of liquefaction and propose lateral flow.

Centrifuge Test and Its Numerical Modeling for Reliquefaction (재액상화에 관한 원심모형실험과 수치해석)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.89-98
    • /
    • 2006
  • In this paper the behavior of saturated sand deposits where liquefaction occurred before is studied for successive earthquakes. The relationship between past pore pressure generation and reliquefaction resistance is examined by using cyclic direct simple shear tests. If the soil sample in direct simple shear produced nearly 90% of excess pore pressure during first time loading, its liquefaction resistance increased during following cyclic loading after consolidation. However, a fully liquefied soil during first time loading has a densely packed condition but shows less liquefaction resistance for the following cyclic loading. UBCSAND model that can account for pore pressure change and stiffness loss of soil during shaking is used to analyze the centrifuge test simulating reliquefaction. The pore pressure rise during first time cyclic loading controls liquefaction resistance. The measurements from reliquefaction centrifuge test are compared with numerical predictions. By considering frequent earthquakes having occurred at the Southern Korea near Japan, such effective stress approach is necessary for reliquefaction study.

Effect of Relative Density on Lateral Load Capacity of a Cyclic Laterally Loaded Pile in Sandy Soil (모래지반의 상대밀도에 따른 횡방향 반복재하 시 말뚝의 극한지지력 평가)

  • Baek, Sung-Ha;Kim, Joon-Young;Lee, Seung-Hwan;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.41-49
    • /
    • 2016
  • Pile foundations used as offshore support structures are dominantly subjected to cyclic lateral loads due to wind and waves. In this study, a series of cyclic lateral load tests were performed on a pre-installed aluminum flexible pile in sandy soil with three different relative densities (40%, 70% and 90%) in order to evaluate the effect of cyclic lateral loads on lateral load capacity of a pile. The cyclic lateral loads increased the lateral load capacity of a pile at 40% relative density, whereas they decreased it at 70% and 90% relative densities. This can be explained by the fact that the cyclic lateral loads slightly densified the surrounding soil in relatively loose sand (40%), while the surrounding soil was disturbed in relatively dense sand (70% and 90%). These effects were more obvious as the cyclic lateral load amplitude increased, being independent with the saturation. Also, from the test results, an empirical equation for the lateral load capacity of a cyclic laterally loaded pile in sandy soil was developed in terms of relative density of the soil and the cyclic lateral load amplitude.