• 제목/요약/키워드: Cyclic Shear

검색결과 732건 처리시간 0.026초

반복하중을 받는 철근콘크리트 교각의 피로손상 (Fatigue Damage of Reinforced Concrete Bridge Columns Subjected to Cyclic Load)

  • 김태훈;김운학;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.99-104
    • /
    • 2002
  • This paper presents an analytical prediction of the fatigue damage of reinforced concrete bridge columns subjected to cyclic load. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. The proposed numerical method for fatigue damage of reinforced concrete bridge columns subjected to cyclic load is verified by comparison with reliable experimental results.

  • PDF

두꺼운 링의 고유진동 해석 (Natural Vibration Analysis of Thick Rings)

  • 박정우;김세희;김창부
    • 한국소음진동공학회논문집
    • /
    • 제15권10호
    • /
    • pp.1186-1194
    • /
    • 2005
  • In this paper, we have systematically formulated the equations concerned to the in-plane and out-of-plane motions and deformations of a thick circular beam by using the kinetic and strain energies in order to analyse natural frequencies of a thick ring. The effects of variation of radius of curvature across the cross-section and also the effects of bending shear, extension and twist are considered. The equations of motion for natural vibration analysis of a ring are obtained utilizing the cyclic symmetry of vibration modes of the ring. The frequencies calculated using thick ring model and thin ring model are compared and discussed with the ones obtained from finite element analysis using the method of cyclic symmetry with 20-node hexahedral solid elements for rings with the different ratio of radial thickness to mean radius.

이축하중을 받는 S45C강의 피로균열의 발생과 성장거동 (Behavior of Fatigue Crack Initition and Growth in S45C Steel Under Biaxial Loading)

  • 박선홍;이상협;김상태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.206-211
    • /
    • 2000
  • Fatigue test was conducted on a S45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading system, i.e fully reserved cyclic torsion without a superimposed static tension or compression, fully reserved cyclic torsion with a superimposed static tension and fully reserved cyclic torsion with a superimposed static compression were employed. The test results show that a superimposed static tensile mean stress reduced fatigue lifetime. however a superimposed static compressive mean stress increased fatigue lifetime. Experimental results indicated that cracks were initiated on planes of maximum shear strain with either a superimposed mean stresses or not. A biaxial mean stress had an effect on the direction which cracks nucleated and propagated at stage I (mode II).

  • PDF

Path-dependent three-dimensional constitutive laws of reinforced concrete -formulation and experimental verifications-

  • Maekawa, Koichi;Irawan, Paulus;Okamura, Hajime
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.743-754
    • /
    • 1997
  • A three-dimensional constitutive modeling for reinforced concrete is presented for finite element nonlinear analysis of reinforced concrete. The targets of interest to the authors are columns confined by lateral steel hoops, RC thin shells subjected to combined in-plane and out-of-plane actions and massive structures of three-dimensional (3D) extent in shear. The elasto-plastic and continuum fracture law is applied to pre-cracked solid concrete. For post cracking formulation, fixed multi-directional smeared crack model is adopted for RC domains of 3D geometry subjected to monotonic and reversed cyclic actions. The authors propose a new scheme of decomposing stress strain fields into sub-planes on which 2D constitutive laws can be applied. The proposed model for 3D reinforced concrete is experimentally verified in both member and structural levels under cyclic actions.

Seismic behavior of reinforced concrete interior beam-column joints with beams of different depths

  • Xing, G.H.;Wu, T.;Niu, D.T.;Liu, X.
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.429-449
    • /
    • 2013
  • Current Design Codes for Reinforced Concrete (RC) interior beam-column joints are based on limited experimental studies on the seismic behavior of eccentric joints. To supplement existing information, an experimental study was conducted that focused on the effect of eccentricity of the deeper beams with respect to the shallow beams. A total of eight one-third scale interior joints with beams of different depths were subjected to reverse cyclic loading. The primary variables in the test specimens were the amount of joint transverse reinforcement and the cross section of the shallow beams. The overall performance of each test assembly was found to be unsatisfactory in terms of joint shear strength, stiffness, energy dissipation and shear deformation. The results indicated that the vertical eccentricity of spandrel beams in this type of joint led to lower capacity in joint shear strength and severe damage of concrete in the joint core. Increasing the joint shear reinforcement was not effective to alter the failure mode from joint shear failure to beam yielding which is favorable for earthquake resistance design, whereas it was effective to reduce the crack width at the small loading stages. Based on the observed behavior, the shear stress of the joint core was suggested to be kept as low as possible for a safe and practical design of this type of joint.

Experimental investigations on composite slabs to evaluate longitudinal shear strength

  • Saravanan, M.;Marimuthu, V.;Prabha, P.;Arul Jayachandran, S.;Datta, D.
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.489-500
    • /
    • 2012
  • Cold-formed steel profile sheets acting as decks have been popularly used in composite slab systems in steel structural works, since it acts as a working platform as well as formwork for concreting during construction stage and also as tension reinforcement for the concrete slab during service. In developing countries like India, this system of flooring is being increasingly used due to the innate advantage of these systems. Three modes of failure have been identified in composite slab such as flexural, vertical shear and longitudinal shear failure. Longitudinal shear failure is the one which is difficult to predict theoretically and therefore experimental methods suggested by Eurocode 4 (EC 4) of four point bending test is in practice throughout world. This paper presents such an experimental investigation on embossed profile sheet acting as a composite deck where in the longitudinal shear bond characteristics values are evaluated. Two stages, brittle and ductile phases were observed during the tests. The cyclic load appears to less effect on the ultimate shear strength of the composite slab.

Study of a new type of steel slit shear wall with introduced out-of-plane folding

  • He, Liusheng;Chen, Shang;Jiang, Huanjun
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.229-237
    • /
    • 2020
  • The steel slit shear wall (SSSW), made by cutting vertical slits in a steel plate, is increasingly used for the seismic protection of building structures. In the domain of thin plate shear walls, the out-of-plane buckling together with the potential fracture developed at slit ends at large lateral deformation may result in degraded shear strength and energy dissipation, which is not desirable in view of seismic design. To address this issue, the present study proposed a new type of SSSW made by intentionally introducing initial out-of-plane folding into the originally flat slitted plate. Quasi-static cyclic tests on three SSSWs with different amplitudes of introduced out-of-plane folding were conducted to study their shear strength, elastic stiffness, energy dissipation capacity and buckling behavior. By introducing proper amplitude of out-of-plane folding into the SSSW fracture at slit ends was eliminated, plumper hysteretic behavior was obtained and there was nearly no strength degradation. A method to estimate the shear strength and elastic stiffness of the new SSSW was also proposed.

Investigation of the shear behaviour of multi-story reinforced concrete walls with eccentric openings

  • Taleb, Rafik;Bechtoula, Hakim;Sakashita, Masanubo;Bourahla, Noureddine;Kono, Susumu
    • Computers and Concrete
    • /
    • 제10권4호
    • /
    • pp.361-377
    • /
    • 2012
  • Four Reinforced Concrete (RC) single span structural walls having various opening sizes and locations were constructed and tested under lateral reversed cyclic loading at the structural laboratory of Kyoto University. These specimens were scaled to 40% and represented the lower three stories of a six-storied RC building. The main purposes of the experimental tests were to evaluate the shear behavior and to identify the influence of opening ratios on the cracks distribution and shear strength of RC structural walls. The shear strength of the specimens was estimated by combining the shear strength of structural wall without openings and the reduction factor that takes into account the openings. Experimental and analytical results showed that the shear strength was different depending on the loading direction due to opening locations. A two-dimensional finite element analysis was carried out to simulate the performance of the tested specimens. The constructed finite elements model simulated the lateral load-drift angle relations quite well.

철근콘크리트 원형 교각의 전단성능에 대한 횡방향철근의 영향 (Effect of Transverse Steel on Shear Performance for RC Bridge Columns)

  • 고성현
    • 한국지진공학회논문집
    • /
    • 제25권5호
    • /
    • pp.191-199
    • /
    • 2021
  • In seismic design, hollow section concrete columns offer advantages by reducing the weight and seismic mass compared to concrete section RC bridge columns. However, the flexure-shear behavior and spirals strain of hollow section concrete columns are not well-understood. Octagonal RC bridge columns of a small-scale model were tested under cyclic lateral load with constant axial load. The volumetric ratio of the transverse spiral hoop of all specimens is 0.00206. The test results showed that the structural performance of the hollow specimen, such as the initial crack pattern, initial stiffness, and diagonal crack pattern, was comparable to that of the solid specimen. However, the lateral strength and ultimate displacement of the hollow specimen noticeably decreased after the drift ratio of 3%. The columns showed flexure-shear failure at the final stage. Analytical and experimental investigations are presented in this study to understand a correlation confinement steel ratio with neutral axis and a correlation between the strain of spirals and the shear resistance capacity of steel in hollow and solid section concrete columns. Furthermore, shear strength components (Vc, V, Vp) and concrete stress were investigated.

수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(I): 모델 개발 (A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(I) : Model Development)

  • 이진선;김동수
    • 한국지진공학회논문집
    • /
    • 제7권5호
    • /
    • pp.47-56
    • /
    • 2003
  • 본 논문에서는 기존 IWAN 모델을 수정하여 사질토 지반의 반복경화 현상을 나타낼 수 있는 지반의 반복경화모델을 개발하였다. 일반적으로 동적하중을 받는 지반재료는 하중 반복회수에 따라 동적 거동특성이 변화하게 되며 이는 반복 경화 및 연화현상으로 나타난다. 본 논문에서는 등방 경화 또는 등방 연화 거동을 하는 스프링슬라이더 요소를 기존 병렬 IWAN 모델에 추가함으로써 지반의 동적 변형특성 표현이 가능하였다. 등방 경화 거동을 보이는 요소들의 항복 응력은 각각 반복 경화함수에 의하여 증가하도록 정의되었으며, 반복 경화함수는 대칭 한계를 가지는 동적 비틂전단 시험결과로부터 정의되었다. 이렇게 정의된 반복 경화함수는 지반의 동적 변형 특성을 묘사하기 위하여 하나의 독립 변수를 가지게 되며, 사용된 독립변수는 지반의 동적 한계 변형률의 특성을 포함하는 누적전단변형률로 사용되었다. 누적 전단변형률은 반복 전단한계 변형률 이상의 변형률의 누적으로 정의되며, 역재하 및 재재하 곡선에서는 Masing의 법칙을 적용하여 계산될 수 있다. 본 논문에서는 모델의 개발과정을 서술하였고, 모델에 대한 검증은 동반논문인 검증편에 설명하였다.