• Title/Summary/Keyword: Cyclic Shear

Search Result 734, Processing Time 0.029 seconds

Analysis of Shear Damage Behaviour of Reinforced Concrete Beams using Modified Compression Field Theory (철근콘크리트보의 전단피로손상거동에 대한 수정압축장이론을 이용한 해석기법)

  • 한승환;오병환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.552-557
    • /
    • 1997
  • In this study, a quantitative analysis technique for the damage process of reinforced concrete beams under repeated shear loading is proposed, which can express the progressively increasing strain and stiffness reduction. The analysis technique is mainly based on the modified compression field theory and scalar damage concept. which describe the strain and stress configuration in the shear zone by considering the 2-dimensional effect, and express the degradation of principal compressive strut by cyclic strain increment, secant modulus decrement, and modifying the parabolic stress strain relationship. The analysis of the response of RC beams under repeated shear-flexure loading has been carried out and compared with the experimental results. The present theory may efficiently be used to evaluate the deflection and strain accumulation under repeated loadings.

  • PDF

Analysis on Shear Stress During Drawing Process of Pearlite Structure of High Carbon Steel (고탄소강 펄라이트 조직의 인발 공정 시 전단응력의 해석)

  • Kim H. S.;Kim B. M.;Bae C. M.;Lee C. Y,
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.93-96
    • /
    • 2004
  • This paper presents a study on defects in pearlite lamella structure of high carbon steel by means of finite-element method(FEM) simulation. High-carbon pearlite steel wire is characterized by its nano-sized microstructure feature of alternation ferrite and cementite. The likely fatigue crack is located on interface of the lamella structure where the maximum amplitude of the longitudinal shear stress and transverse shear stress was calculated during cyclic loading. The FEM is proposed for maximum shear stress from loading of lamella structure, and a method is predicted to analyze the likely fatigue crack generation. It is possible to obtain the important basic data which can be guaranteed in the ductility of high carbon steel wire by using FEM simulation.

  • PDF

Shear strength of Cast-In Place R/C Infill Shear Wall (현장타설 철근콘크리트 끼움벽의 전단강도)

  • Choi Chang Sik;Lee Hye Yeon;Kim Sun Woo;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.247-250
    • /
    • 2005
  • The aim of Cast-In-Place(CIP) method is to upgrade the strength, ductility and stiffness of the structure to the required level. The main objective of this research is to investigate the shear and the flexural strength of reinforced concrete frames infilled with CIP reinforced concrete wall. For this three 1/3 scale, one-bay, one story reinforced concrete infill wall were tested under reversed cyclic loading simulating the seismic effect. Results of tests of CIP shear wall were reviewed to evaluate the current design provisions and to establish the feasible retrofitting method.

  • PDF

Hysteretic Behavoir of Flat Plate System Using Rebar Type Shear Reinforcement (철근형 전단보강근을 사용한 플랫 플레이트 시스템의 이력 거동)

  • Lee, Hyun-Ho;Chun, Young-Soo;Kim, Jin-Soo;Lee, Do-Bum;Kim, Ook-Jong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.55-58
    • /
    • 2005
  • From the development of residential flat plate system, continuously bended shear reinforcements were applied in the joint performance test. The testing parameters are shear reinforcement types, which are no reinforcement, studrail reinforcement, and rebar type reinforcement. To verify the lateral resisting capacity, cyclic load is applied in the constant vertical load condition. From the test results, the resisting capacity of developed shear reinforcement system has a good performance behavior in the story drift ratio.

  • PDF

Predicting the Ductility Capacity of Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부의 연성능력 평가)

  • Oh Ki-Jong;Chai Hyee-Dai;Lee Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.227-230
    • /
    • 2005
  • This paper provides a method to predict the ductile capacity of reinforced concrete beam-column joints that fail in shear after the plastic hinges occur at both ends of the adjacent beams. The proposed method takes into account shear strength deterioration in the beam-column joints. The shear strength and the corresponding ductility of the proposed method was verified by comparing with the four RC beam-column assembles under reversed cyclic loading corrected from the technical literature. Comparisons between the observed and calculated shear strengths and their corresponding ductilities of the tested assembles, showed reasonable agreement

  • PDF

Effect of loading rate on mechanical behavior of SRC shearwalls

  • Esaki, Fumiya;Ono, Masayuki
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.201-212
    • /
    • 2001
  • In order to investigate the effect of the loading rate on the mechanical behavior of SRC shearwalls, we conducted the lateral loading tests on the 1/3 scale model shearwalls whose edge columns were reinforced by H-shaped steel. The specimens were subjected to the reversed cyclic lateral load under a variable axial load. The two types of loading rate, 0.01 cm/sec for the static loading and 1 cm/sec for the dynamic loading were adopted. The failure mode in all specimens was the sliding shear of the in-filled wall panel. The edge columns did not fail in shear. The initial lateral stiffness and lateral load carrying capacity of the shearwalls subjected to the dynamic loading were about 10% larger than those subjected to the static loading. The effects of the arrangement of the H-shaped steel on the lateral load carrying capacity and the lateral load-displacement hysteresis response were not significant.

Seismic Response Analysis of Lightly Reinforced Concrete Shear Walls

  • Rhee, In-Kyu
    • International Journal of Railway
    • /
    • v.3 no.2
    • /
    • pp.73-82
    • /
    • 2010
  • Global and local behaviors of a lightly RC shear walls are investigated in this paper. For the sake of cyclic behaviors, nominal ground accelerations of 0.15 g, 0.40 g and 0.55 g which associated with natural periods of the walls are applied as listed in French CAMUS-2000 shake table test. Modified Kent & Park model, Drucker-Prager model for concrete material and $Giufr\acute{e}$-Menegotto-Pinto model for rebar are used for time history analyses using fiber/solids elements respectively. Alternatively, Eulerian beam analysis are discussed by imposing inelastic hinges at the most possible plastic hinge location using modified Takeda's trilinear model with stiffness reduction. Relative displacements, base shears, bending moments of 5-story shear building with 36-tons of mass under bi-lateral seismic excitation are extracted and compared with EC-8, PS-92 and KBC-09 provisions. Multi-scaled degradation process; material damage, elemental fracture and structural failure in turn is discussed in the view of numerical accuracy, efficiency and limitation depending on three different model-based analyses.

  • PDF

Behavior of Reinforced Concrete Members Having Different Steel Arrangements (철근의 배근위치가 다른 철근콘크리트 부재의 거동 분석)

  • Kim, Ji-Hyun;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.333-336
    • /
    • 2006
  • The response of a reinforced concrete element under cyclic shear is characterized by the hysteretic loops of the shear stress-strain curves. Recent tests have shown that the orientation of steel grids in RC shear elements has a strong effect on the "pinching effect" and ductility in the post-yield hysteretic loops. In this paper, four RC elements are considered to study the effect of the steel grid orientation on "pinching effect" and ductility. The presence and absence of the pinching mechanism in the post-yield shear hysteretic loops are studied using the Rotating Angle Softened Truss Model (RA-STM) theory.

  • PDF

Unequal depth beam to column connection joint

  • Ben Mou;Aijia Zhang;Wei Pan
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.823-837
    • /
    • 2023
  • This paper presents the seismic performance of seven beam-column joints with an eccentricity between beam depths under cyclic loadings. The failure modes of the panel zone were divided into two types. One was the shear force failure that appeared in the entire panel zone (SFEPZ), the other was the shear force failure that appeared in the partial panel zone (SFPPZ). Seven finite element models were established using multi-scale methods. Compared with the experimental specimens, the hysteretic loops exhibited a similar trend. The multi-scale models could accurately simulate the experimental results. Furthermore, the calculation formulas of yield and plastic shear capacity of unequal-depth joints with outer annular stiffener were proposed.

Hysteretic Characteristics and Deformation Modes of Steel Plate Shear Walls According to Aspect Ratios and Width-to-Thickness Ratios (강판 형상비 및 판폭두께비에 따른 강판전단벽의 변형모드 및 이력특성)

  • Shin, Dong-Hyeon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.37-45
    • /
    • 2024
  • Steel plate shear walls (SPSWs) have been recognized as an effective seismic-force resisting systems due to their excellent strength and stiffness characteristics. The infill steel plate in a SPSW is constrained by a boundary frame consisting of vertical and horizontal structural members. The main purpose of this study was to investigate deformation modes and hysteretic characteristics of steel plate shear walls (SPSWs) to consider the effects of their aspect ratios and width-to-thicness ratios. The finite element model (FEM) was establish in order to simulate cyclic responses of SPSWs which have the two-side clamped boundary condition and made of conventional steel grade. The stress distribution obtained from the FEA results demonstrated that the principal stresses on steel plate with large thickness-to-width ratio were more uniformly distributed along its horizontal cross section due to the formation of multiple struts.