• 제목/요약/키워드: Cyclic Nucleotide-gated Channel

검색결과 8건 처리시간 0.141초

Role of a Putative N-Glycosylation Site in Bovine Retinal Cyclic Nucleotide-Gated Channel

  • Park, Seong-Hwan;Park, Chul-Seung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1997년도 학술발표회
    • /
    • pp.25-25
    • /
    • 1997
  • Cyclic nucleotide-gated channels (CNGC's) contain a putative N-glycosylation site (Asn-X-Ser/Thr) in the linker regions connecting the fourth transmembrane domain (S4) and the ion conduction pore (P-region). This putative N-glycosylation site is highly conserved and thus found in many different CNGC in various organisms, from fruit to human.(omitted)

  • PDF

Identification and Characterization of a Putative Cyclic Nucleotide-gated Channel, CNG-1, in C. elegans

  • Cho, Suk-Woo;Cho, Jeong-Hoon;Song, Hyun-Ok;Park, Chul-Seung
    • Molecules and Cells
    • /
    • 제19권1호
    • /
    • pp.149-154
    • /
    • 2005
  • Cyclic nucleotide-gated (CNG) channels encoded by the tax-4 and tax-2 genes are required for chemosensing and thermosensing in the nematode C. elegans. We identified a gene in the C. elegans genome, which we designated cng-1, that is highly homologous to tax-4. Partial CNG-1 protein tagged with green fluorescent protein was expressed in several sensory neurons of the amphid. We created a deletion mutant of cng-1, cng-1 (jh111), to investigate its in vivo function. The mutant worms had no detectable abnormalities in terms of their basic behavior or morphology. Whereas tax-4 and tax-2 mutants failed to respond to water-soluble or volatile chemical attractants, the cng-1 null mutant exhibited normal chemotaxis to such chemicals and a tax-4;cng-1 double mutant had a similar phenotype to tax-4 single mutants. Interestingly, cng-1 and tax-4 had a synergistic effect on brood size.

Binding Symmetry of External Divalent Cations to Cyclic Nucleotide-gated IonChannel Reveled by Channel Tandem Dimers

  • Kwon, Ryuk-Jun;Park, Chul-Seung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.37-37
    • /
    • 2001
  • Cyclic nucleotide-gated (CNG) channels are composed of homo or hetero tetramer of ${\alpha}$ and ${\beta}$ subunits. The a subunits of these channels have a conserved glutamate residue within the pore-forming region. This residue determines the selectivity as well as the affinity for the extracellular divalent cations. Using the high affinity mutant (E363D) of bovine retinal CNG channel in which the Glu was replaced to Asp at position 363, we constructed tandem dimers and investigated the binding symmetry of divalent cation to the site.(omitted)

  • PDF

Distinct Regional and Cellular Localization of Hyperpolarization-activated Cyclic Nucleotide-gated Channel 1 in Cerebellar Cortex of Rat

  • Kwon, Young-Joon;Kim, Tae-Sung
    • Journal of Korean Neurosurgical Society
    • /
    • 제42권3호
    • /
    • pp.205-210
    • /
    • 2007
  • Objective : Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels mediate the hyperpolarization-activated currents (Ih) that participate in regulating neuronal membrane potential and contribute critically to pacemaker activity, promoting synchronization of neuronal networks. However, distinct regional and cellular localization of HCN channels in the brain have not been precisely defined. Aim of this study was to verify the precise cellular location of HCN1 channels in rat cerebellum to better understand the physiological role these channels play in synaptic transmission between CNS neurons. Methods : HCN1 expression in rat brain was analyzed using immunohistochemistry and electron-microscopic observations. Postsynaptic density-95 (PSD-95), otherwise known as locating and clustering protein, was also examined to clarify its role in the subcellular location of HCN1 channels. In addition, to presume the binding of HCN1 channels with PSD-95, putative binding motifs in these channels were investigated using software-searching method. Results : HCN1 channels were locally distributed at the presynaptic terminal of basket cell and exactly corresponded with the location of PSD-95. Moreover, nine putative SH3 domain of PSD-95 binding motifs were discovered in HCN1 channels from motif analysis. Conclusion : Distinct localization of HCN1 channels in rat cerebellum is possible, especially when analyzed in conjunction with the SH3 domain of PSD-95. Considering that HCN1 channels contribute to spontaneous rhythmic action potentials, it is suggested that HCN1 channels located at the presynaptic terminal of neurons may play an important role in synaptic plasticity.

Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology

  • Pozdnyakov, Ilya;Matantseva, Olga;Skarlato, Sergei
    • ALGAE
    • /
    • 제36권4호
    • /
    • pp.315-326
    • /
    • 2021
  • Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5-trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of G-protein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.

Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons

  • Han, Jin-Eon;Cho, Jin-Hwa;Choi, In-Sun;Kim, Do-Yeon;Jang, Il-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권2호
    • /
    • pp.215-223
    • /
    • 2017
  • The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent $K^+$ and $Ca^{2+}$ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent $K^+$currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent $K^+$ currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker $Cs^+$ (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent $Ca^{2+}$ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.

Alterations in hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN) expression in the hippocampus following pilocarpine-induced status epilepticus

  • Oh, Yun-Jung;Na, Jongju;Jeong, Ji-Heon;Park, Dae-Kyoon;Park, Kyung-Ho;Ko, Jeong-Sik;Kim, Duk-Soo
    • BMB Reports
    • /
    • 제45권11호
    • /
    • pp.635-640
    • /
    • 2012
  • To understand the effects of HCN as potential mediators in the pathogenesis of epilepsy that evoke long-term impaired excitability; the present study was designed to elucidate whether the alterations of HCN expression induced by status epilepticus (SE) is responsible for epileptogenesis. Although HCN1 immunoreactivity was observed in the hippocampus, its immunoreactivities were enhanced at 12 hrs following SE. Although, HCN1 immunoreactivities were reduced in all the hippocampi at 2 weeks, a re-increase in the expression at 2-3 months following SE was observed. In contrast to HCN1, HCN 4 expressions were un-changed, although HCN2 immunoreactive neurons exhibited some changes following SE. Taken together, our findings suggest that altered expressions of HCN1 following SE may be mainly involved in the imbalances of neurotransmissions to hippocampal circuits; thus, it is proposed that HCN1 may play an important role in the epileptogenic period as a compensatory response.

Presynatic Expression of HCN Channel Subunits in Cerebellar Basket Cells

  • Yi, Jee-Hyun;Park, Kyung-Joon;Kang, Shin-Jung;Shin, Ki-Soon
    • Animal cells and systems
    • /
    • 제11권2호
    • /
    • pp.199-204
    • /
    • 2007
  • HCN (hyperpolarization-activated cyclic nucleotide-gated) channels, whose gene family consists of four subunits (HCN1-4), mediate depolarizing cation currents and contribute to controlling neuronal excitability. In the present study, immunohistochemical and electrophysiological approaches were used to elucidate the role of HCN channels in the cerebellum. Immunohistochemical labeling for HCN1 and HCN2 channels revealed localized expression of both channels at pinceau, the specialized structure of presynaptic axon terminals of basket cells. To determine the functional role of the presynaptic HCN channels, spontaneous inhibitory postsynaptic currents (IPSCs) were recorded from Purkinje cells, the main synaptic targets of basket cells in the cerebellum. While activation of HCN channels by 8-bromo-cAMP increased amplitude of spontaneous IPSCs, blockade of the activated HCN channels by subsequent ZD7288 application reduced the amplitude of spontaneous IPSCs to the level far below the control. Our results imply that modulation of HCN1 and HCN2 channels in presynaptic terminals of basket cells regulates neurotransmitter release, thereby controlling the excitability of Purkinje cells.