• 제목/요약/키워드: Cyclic Fatigue

검색결과 579건 처리시간 0.026초

Multi-objective durability and layout design of fabric braided braking hose in cyclic motion

  • Cho, J.R.;Kim, Y.H.
    • Steel and Composite Structures
    • /
    • 제25권4호
    • /
    • pp.403-413
    • /
    • 2017
  • The fabric braided braking hose that delivers the driver's braking force to brake cylinder undergoes the large deformation cyclic motion according to the steering and bump/rebound motions of vehicle. The cyclic large deformation of braking hose may give rise to two critical problems: the interference with other adjacent vehicle parts and the micro cracking stemming from the fatigue damage accumulation. Hence, both the hose deformation and the fatigue damage become the critical issue in the design of braking hose. In this context, this paper introduces a multi-objective optimization method for minimizing the both quantities. The total length of hose and the helix angles of fabric braided composite layers are chosen for the design variables, and the maximum hose deformation and the critical fatigue life cycle are defined by the individual single objective functions. The trade-off between two single objective functions is made by introducing the weighting factors. The proposed optimization method is validated and the improvement of initial hose design is examined through the benchmark simulation. Furthermore, the dependence of optimum solutions on the weighting factors is also investigated.

The Influence of Cyclic-bending Moment on the Delamination Zone and the Fatigue Crack Propagation in A15052/AFRP Laminates (반복-굽힘 모멘트가 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전에 미치는 영향)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.231-237
    • /
    • 2000
  • A15052/AFRP laminates were developed principally to obtain a material with good fatigue strength, in which possible cracks would grow very slowly. Weight savings of more than 30% should be attainable in practice. Also, the crack bridging fibers could still was carry a significant part of the load over the crack, thus the COD and stress intensity factor was reduced at the crack tip. A15052/ AFRP laminates consists of three thin sheets of 5052-H34 aluminum alloy and two layers of [0] unidirectional aramid fiber prepreg. The cyclic-bending moment test was investigated based on applying the five kinds of bending moments. The size of the delamination zone produced between 5052-H34 aluminum alloy sheets and fiber-adhesive layers was measured from ultrasonic C-scan pictures taken around the fatigue crack. In addition, the relationship between the cyclic-bending moment and the delamination zone size was studied and the effect of fiber bridging mechanism was also considered.

  • PDF

The Influence of Temperature on Low Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel (I) - Monotonic and Cyclic Behavior - (냉간 가공된 316L 스테인리스강의 저주기 피로 거동에 미치는 온도의 영향 (I) - 인장 및 반복 거동 -)

  • Hong, Seong-Gu;Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제28권4호
    • /
    • pp.333-342
    • /
    • 2004
  • Tensile and low cycle fatigue (LCF) tests on prior cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650$^{\circ}C$. At all test temperatures, cold worked material showed the tendency of higher strength and lower ductility compared with those of solution treated material. The embrittlement of material occurred in the temperature region from 300$^{\circ}C$ to 600$^{\circ}C$ due to dynamic strain aging. Following initial cyclic hardening for a few cycles, cycling softening was observed to dominate until failure occurred during LCF deformation, and the cyclic softening behavior strongly depended on temperature and strain amplitude. Non-Masing behavior was observed at all test temperatures and hysteresis energy curve method was employed to describe the stress-strain hysteresis loops at half$.$life. The prediction shows a good agreement with the experimental results.

Thermal-mechanical Fatigue Life Prediction of 12Cr Forged Steel Using Strain Range Partitioning method (변형률분할법에 의한 12Cr 단조강의 열피로 수명예측)

  • 하정수;옹장우;고승기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제18권5호
    • /
    • pp.1192-1202
    • /
    • 1994
  • Fatigue behavior and life prediction were presented for thermal-mechanical and isothermal low cycle fatigue of 12Cr forged steel used for high temperature applications. In-phase and out-of-phase thermal-mechanical fatigue test at 350 to 600.deg. C and isothermal low cycle fatigue test at 600.deg. C were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Cyclic softening behavior was observed regardless of thermal-mechanical and isothermal fatigue tests. The phase difference between temperature and strain in thermal-mechanical fatigue resulted in significantly shorter fatigue life for out-of-phase than for in-phase. The difference in fatigue lives was dependent upon the magnitudes of inelastic strain ranges and mean stresses. Increase in inelastic strain range showed a tendency of intergranular cracking and decrease in fatigue life, especially for out-of-phase thermal-mechanical fatigue. Thermal-mechanical fatigue life prediction was made by partitioning the strain ranges of the hysteresis loops and the results of isothermal low cycle fatigue tests which were performed under the combination of slow and fast strain rates. Predicted fatigue lives for out-of-phase using the strain range partitioning method showed an excellent agreement with the actual out-of-phase thermal-mechanical fatigue lives within a factor of 1.5. Conventional strain range partitioning method exhibited a poor accuracy in the prediction of in-phase thermal-mechanical fatigue lives, which was quite improved conservatively by a proposed strain range partitioning method.

Effect of Internal Stress on Cyclic Fatigue Failure in ProTaper Universal (ProTaper Universal에 축적된 내부 응력이 피로 파절에 미치는 영향)

  • Jo, Yun-Sung;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • 제28권1호
    • /
    • pp.57-66
    • /
    • 2012
  • The purpose of this study was to evaluate the relation between intentionally induced internal stress and cyclic fatigue failure of ProTaper Universal. ProTaper Universal (Dentsply Maillefer) S1, S2, F1, F2, F3, F4 and F5 (25 mm length) were used in this study. To give the internal stress, the ProTaper Universal were put into the .02 taper Endo-Training-Bloc (Dentsply Maillefer) until auto-stop by torque controlled motor. The rotation speed was 300 rpm and torque value was 1.0 Ncm. ProTaper Universal were grouped by the induced number of internal stress and randomly distributed among one control group and three experimental groups (n=10). The four groups were Stress 0 (control), Stress 1, Stress 2 and Stress 3. These instruments were rotated until separation. For cyclic fatigue measurement, inclined plane was used and time for separation was recorded. It was statistically analyzed using two-way ANOVA and Duncan post-hoc test at 95% confidential level. In all ProTaper Universal, there was statistically significant decrease on time for separation in Stress 3. In F2 and F3, there were statistically significant difference between control group and all experimental groups. And in F4 and F5, Stress 2 and 3 groups showed significantly lower cyclic fatigue resistance from Stress 0 group. In the limitation of this study, cyclic fatigue failure of ProTaper Universal is influenced by accumulated internal stress.

Thermal Durability of Thermal Barrier Coatings in Furnace Cyclic Thermal Fatigue Test: Effects of Purity and Monoclinic Phase in Feedstock Powder

  • Park, Hyun-Myung;Jun, Soo-Hyk;Lyu, Guanlin;Jung, Yeon-Gil;Yan, Byung-Il;Park, Kwang-Yong
    • Journal of the Korean Ceramic Society
    • /
    • 제55권6호
    • /
    • pp.608-617
    • /
    • 2018
  • The effects of the purity and monoclinic phase of feedstock powder on the thermal durability of thermal barrier coatings (TBC) were investigated through cyclic thermal exposure. Bond and top coats were deposited by high velocity oxygen fuel method using Ni-Co based feedstock powder and air plasma spray method using three kinds of yttria-stabilized zirconia with different purity and monoclinic phase content, respectively. Furnace cyclic thermal fatigue test was performed to investigate the thermal fatigue behavior and thermal durability of TBCs. TBCs with high purity powder showed better sintering resistance and less thickness in the thermally grown oxide layer. The thermal durability was found to strongly depend on the content of monoclinic phase and the porosity in the top coat; the best thermal fatigue behavior and thermal durability were in the TBC prepared with high purity powder without monoclinic phase.

A study on the detection method of inner's crack of STS304 pipe using Ultrasonic Testing (초음파 검사법을 이용한 STS304 배관재 내부 균열 측정 방법에 대한 연구)

  • Hwang, Woong-Gi;Lee, Kyung-Min;Woo, Young-Kwan;Seo, Duck-Hee;Lee, Bo-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.415-418
    • /
    • 2011
  • Thermal fatigue is one of the life-limiting damage mechanisms in the nuclear power plant conditions. The turbulent mixing of fluids of different temperatures induces rapid temperature changes to the pipe wall. The successive thermal transients cause varying cyclic thermal stresses. These cyclic thermal stresses cause fatigue crack nucleation and growth similar to the cyclic mechanical stresses. The aim of this study was to fulfil the need by developing an real crack manufacturing method, which would produce realistic cracks. The test material was austenitic STS 304, which is used as pipelines in the reactor coolant system of a nuclear power plants. In order to fabricate thermal fatigue crack similar to realistic crack, successive thermal transients were applied to the specimen. Thermal transient cycles were combined with heating (60sec) and cooling cycle (30sec). And, In order to identify ultrasonic characteristic, it was performed the ultrasonic reflection measuring method for the fabricated specimen. From the results of ultrasonic reflection measuring testing, it was conformed that A-scan results(average 83% of real crack depth) for the TFC reference specimen was more enhanced NDT reliability than results(average 38% of real crack depth) for the EDM notch reference specimen.

  • PDF

Static and Fatigue Fracture Assessment of Hybrid Composite Joint for the Tilting Car Body (틸팅차량용 차체의 Hybrid 복합재 접합체결부의 정적 및 피로 파괴 평가)

  • Jung, Dal-Woo;Kim, Jung-Seok;Seo, Sueng-Il;Jo, Se-Hyun;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제31권2호
    • /
    • pp.166-173
    • /
    • 2007
  • Fatigue fracture behavior of a hybrid bolted joint was evaluated in comparison to the case of static fracture. Two kinds of specimens were fabricated for the mechanical tests; a hybrid bolted joint specimen for the shear test and a hybrid joint part specimen applied in the real tilting car body for the bending test. Characteristic fracture behaviors of those specimens under cyclic toads were obviously different from the case under static loads. For the hybrid bolted joint specimen, static shear loading caused the fracture of the bolt body itself in a pure shear mode, whereas cyclic shear loading brought about the fracture at the site of local tensile stress concentration. For the hybrid joint part specimen, static bend loading caused the shear deformation and fracture in the honeycomb core region, while cyclic bend loading did the delamination along the interface between composite skin and honeycomb core layers as well as the fracture of welded joint part. Experimental results obtained by static and fatigue tests were reflected in modifications of design parameters of the hybrid joint structure in the real tilting car body.

Behavior of Fatigue Crack Initiation and Growth in SM45C Steel under Biaxial Loading (이축하중을 받는 SM45C강의 피로균열의 발생과 성장거동)

  • KIM SANG-TAE;PARK SUN-HONG;KWUN SOOK-IN
    • Journal of Ocean Engineering and Technology
    • /
    • 제18권6호
    • /
    • pp.84-90
    • /
    • 2004
  • Fatigue tests were conducted on SM45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading systems, were employed fully-reserved cyclic torsion without a superimposed static tension or compression fully-reserved cyclic torsion with a superimposed static tension and fully-reserved cyclic torsion with a superimposed static compression. The test results showed that a superimposed static tensile mean stress reduced fatigue life however a superimposed static compressive mean stress increased fatigue life. Experimental results indicated that cracks were initiated on planes of maximum shear strain whether or not the mean stresses were superimposed. A biaxial mean stress had an effect on the direction that the cracks nucleated and propagated at stage 1 (mode II).

Bree's interaction diagram of beams with considering creep and ductile damage

  • Nayebi, A.
    • Structural Engineering and Mechanics
    • /
    • 제30권6호
    • /
    • pp.665-678
    • /
    • 2008
  • The beams components subjected to the loading such as axial, bending and cyclic thermal loads were studied in this research. The used constitutive equations are those of elasto-plasticity coupled to ductile and/or creep damage. The nonlinear kinematic hardening behavior was considered in elastoplasticity modeling. The unified damage law proposed for ductile failure and fatigue by the author of Sermage et al. (2000) and Kachanov's creep damage model applied to cyclic creep and low cycle fatigue of beams. Based on the results of the analysis, the shakedown limit loads were determined through the calculation of the residual strains developed in the beam analysis. The iterative technique determines the shakedown limit load in an iterative manner by performing a series of full coupled elastic-plastic and continuum damage cyclic loading modeling. The maximum load carrying capacity of the beam can withstand, were determined and imposed on the Bree's interaction diagram. Comparison between the shakedown diagrams generated by or without creep and/or ductile damage for the loading patterns was presented.