• Title/Summary/Keyword: Cyclic Bending load

Search Result 100, Processing Time 0.021 seconds

An Experimental Study on Failure Behavior of TP316 Stainless Steel Pipe with Local Wall Thinning and Cracking (국부 감육과 균열이 발생한 TP316 스테인리스강 배관의 파괴거동에 관한 실험적 연구)

  • Cheung, Jin Hwan;Kim, In Tae;Choi, Seock Jin;Choi, Hyung Suk;Kim, Hee Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.647-657
    • /
    • 2012
  • Although nuclear power plant piping system is designed conforming to design specifications, the piping systems are deteriorated with increase in service life. In this study, monotonic and cyclic loading tests were carried out on TP316 stainless steel pipe specimens, and the effect of local wall thinning and cracking on failure behavior was investigated. In the tests, 0%, 35% and 75% wall thinning and cracking of initial thickness were artificially introduced to inside elbow and straight pipe specimens, and internal pressures of 20MPa were applied to simulate real operation condition. From the test results, the effect of local wall thinning and cracking on failure mode, ultimate load, number of cycle and strain energy was presented, and maximum bending moment was compared with allowable bending moment calculated by ASME code.

Experimental and numerical studies on seismic performance of hollow RC bridge columns

  • Han, Qiang;Zhou, Yulong;Du, Xiuli;Huang, Chao;Lee, George C.
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.251-269
    • /
    • 2014
  • To investigate the seismic performance and to obtain quantitative parameters for the requirement of performance-based bridge seismic design approach, 12 reinforced concrete (RC) hollow rectangular bridge column specimens were tested under constant axial load and cyclic bending. Parametric study is carried out on axial load ratio, aspect ratio, longitudinal reinforcement ratio and transverse reinforcement ratio. The damage states of these column specimens were related to engineering limit states to determine the quantitative criteria of performance-based bridge seismic design. The hysteretic behavior of bridge column specimens was simulated based on the fiber model in OpenSees program and the results of the force-displacement hysteretic curves were well agreed with the experimental results. The damage states of residual cracking, cover spalling, and core crushing could be well related to engineering limit states, such as longitudinal tensile strains of reinforcement or compressive strains of concrete, etc. using cumulative probability curves. The ductility coefficient varying from 3.71 to 8.29, and the equivalent viscous damping ratio varying from 0.19 to 0.31 could meet the requirements of seismic design.

An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method (격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 구조성능평가)

  • Moon, Hong Bi;Lee, Jeong In;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • In the case of columns in buildings with soft story, the concentration of stress due to the difference in stiffness can damage the columns. The irregularity of buildings including soft story requires retrofit because combined load of compression, bending, shear, and torsion acts on the structure. Concrete jacketing is advantageous in securing the strength and stiffness of existing members. However, the brittleness of concrete make it difficult to secure ductility to resist the large deformation, and the complicated construction process for integrity between the existing member and extended section reduces the constructability. In this study, two types of Steel Grid Reinforcement (SGR), which are Steel Wire Mesh (SWM) for integrity and Steel Fiber Non-Shrinkage Mortar (SFNM) for crack resistance are proposed. One reinforced concrete (RC) column with non-seismic details and two columns retrofitted with each different types of proposed method were manufactured. Seismic performance was analyzed for cyclic loading test in which a combined load of compression, bending, shear, and torsion was applied. As a result of the experiment, specimens retrofitted with proposed concrete jacketing method showed 862% of maximum load, 188% of maximum displacement and 1,324% of stiffness compared to non-retrofitted specimen.

Characteristic Behavior of High-Strength Reinforced Concrete Bridge Column under Simulated Seismic Loading (고강도 철근콘크리트 교각의 내진거동특성)

  • Ra Hong-Seong;Lee Kyoung-Joon;Ryu Hyo-Jin;Hwang Sun-Kyoung;Lee Chin-Ok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.22-27
    • /
    • 2004
  • This experimental investigation was conducted to examine the seismic performance of reinforced concrete bridge columns. The columns were subjected to a constant axial load and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement (ps = 0.96, 1.44 per cent) and axial load ratio (0.05, 0.1, 0.2 P/Po) and strength $(350kgf/cm^2,\;600kgf/cm^2)$. Test results show that bridge columns with 50 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. For bridge columns with axial load ratio(P/Po) less than 0.2, the ratio of Mmax over Mad, nominal moment capacity predicted by ACI 318-02 provisions, is consistently greater than 1 with approximately a 20 percent margin of safty.

  • PDF

A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM (X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구)

  • Kim, Sung-Woong;Hong, Soon-Hyeok;Jeon, Hyoung-Yong;Cho, Seok-Swoo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.258-265
    • /
    • 2001
  • Turbine blade is subject to force of three type ; torsional force by torsion-mount, centrifugal force by rotation of rotor and cyclic bending force by steam pressure. Cyclic bending force of them is main factor on fatigue fracture. In the X-ray diffraction method, the change in the values related to plastic deformation and residual stress near the fracture surface mat be determined, and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade parts was predicted. Failure analysis is performed by finite element method and Goodman diagram on torsion-mounted blade.

  • PDF

Seismic Performance of High-Strength Concrete Columns

  • Hwang Sun-Kyoung;Yun Hyun-Do;Han Byung-Chan;Park Wan-Shin;Kim Sun-Woo;Han Min-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.41-44
    • /
    • 2004
  • This experimental investigation was conducted to examine the behaviour of eight one-third scale columns made of high-strength concrete (HSC). The columns were subjected to a constant axial load corresponding to 30 per cent of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement, tie configuration and tie yield strength. Columns with 42 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. Relationships between the calculated damage index and the observed damage such as initial crack, spalling of concrete, buckling of longitudinal bar, and crushing of concrete are propose.

  • PDF

Cyclic Loading Tests for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar (PSRC 합성기둥의 반복가력 실험)

  • Hwang, Hyeon Jong;Eom, Tae Sung;Park, Hong Gun;Lee, Chang Nam;Kim, Hyoung Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.635-647
    • /
    • 2013
  • PSRC composite column is a concrete encased steel angle column. In the PSRC composite column, the steel angles placed at the corner of the cross-section resists bending moment and compression load. In the present study, using the performance criteria in KBC 2009, cyclic lateral loading test was performed for PSRC columns to verify the seismic performance. The test parameters were the column type, the use of continuous hoop, and the use of studs for steel angle. 2/3 scale specimens of a conventional composite column and three PSRC columns were tested. The test results showed that the load-carrying capacity predicted by KBC 2009 correlated well with the test results. The specimens also exhibited good deformation and energy dissipation capacities. After concrete cover spalling under cyclic loading, the load-carrying capacity were decreased by buckling of longitudinal bars and steel angles. When continuous hoop was used, the deformability of the PSRC column was improved, preventing early buckling of the steel angles.

Behavior of concrete-filled double skin steel tube beam-columns

  • Hassan, Maha M.;Mahmoud, Ahmed A.;Serror, Mohammed H.
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1141-1162
    • /
    • 2016
  • Concrete-filled double skin steel tube (CFDST) beam-columns are widely used in industrial plants, subways, high-rise buildings and arch bridges. The CFDST columns have the same advantages as traditional CFT members. Moreover, they have lighter weight, higher bending stiffness, better cyclic performance, and have higher fire resistance capacities than their CFT counterparts. The scope of this study is to develop finite element models that can predict accepted capacities of double skin concrete-filled tube columns under the combined effect of axial and bending actions. The analysis results were studied to determine the distribution of stresses among the different components and the effect of the concrete core on the outer and inner steel tube. The developed models are first verified against the available experimental data. Accordingly, an extensive parametric study was performed considering different key factors including load eccentricity, slenderness ratio, concrete compressive strength, and steel tube yield strength. The results of the performed parametric study are intended to supplement the experimental research and examine the accuracy of the available design formulas.

Development of all-polymer flexible circuit for micro-nano system using printing method (프린팅 방법을 통한 Micro-Nano 시스템을 위한 all polymer flexible cuircuit 개발)

  • 이정훈;황교일;신창용;류경주;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.750-753
    • /
    • 2002
  • At present, almost circuits are wired using copper in flexible circuits. But, these circuit have limit to flexibility so it occurs fracture about cyclic bending and, thermal load of bending stress occur a circuit trouble. a study of all-polymer flexible circuits get over that problem. Established fabrication method of all-polymer circuits is photolithograph. This method can not have mass production, so this method wastes time and human effort. In this study, all polymer flexible circuits are fabricated using the inkjet process.

  • PDF

Torsional and Flexural Behavior Characteristics of Symmetric Pier Copping Beam (대칭형 교각 코핑부 보의 비틀림 및 휨 거동 특성)

  • Kwon, Min-Ho;Jung, Hee-Hyo;Kim, Jin-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.107-114
    • /
    • 2007
  • The main aim of this study was to evaluate the bending and torsional behaviors of representative regular type cap beams in elevated guideway structures. A1/2 scale model copping beam, excluding the column portion, was designed, constructed, and tested. The copping beam was subjected to horizontal monotonic and cyclic loads with a constant vertical load over the loading stage. The damage was very much dominated by torsion. Experiment results showed that the spiral confinement in the beam helped to restrain the opening of torsional cracks in the column zone. Hence, the torsional strength of the cap beam contributesgreatly to the confinement conditions of the column.