• 제목/요약/키워드: Cyclic Bending Moment

검색결과 82건 처리시간 0.021초

Mean moment effect on circular thin-walled tubes under cyclic bending

  • Chang, Kao-Hua;Pan, Wen-Fung;Lee, Kuo-Long
    • Structural Engineering and Mechanics
    • /
    • 제28권5호
    • /
    • pp.495-514
    • /
    • 2008
  • In this paper, experimental and theoretical investigations of the effect of the mean moment on the response and collapse of circular thin-walled tubes subjected to cyclic bending are discussed. To highlight the influence of the mean moment effect, three different moment ratios r (minimum moment/ maximum moment) of -1, -0.5 and 0, respectively, were experimentally investigated. It has been found that the moment-curvature loop gradually shrinks with the number of cycles, and becomes stable after a few cycles for symmetric cyclic bending (r = -1). However, the moment-curvature loop exhibits ratcheting and increases with the number of cycles for unsymmetric cyclic bending (r = -0.5 or 0). In addition, although the three groups of tested specimens had three different moment ratios, when plotted in a log-log scale, three parallel straight lines describe the relationship between the controlled moment range and the number of cycles necessary to produce buckling. Finally, the endochronic theory combined with the principle of virtual work was used to simulate the relationship among the moment, curvature and ovalization of thin-walled tubes under cyclic bending. An empirical formulation was proposed for simulating the relationship between the moment range and the number of cycles necessary to produce buckling for thin-walled tubes subjected to cyclic bending with different moment ratios. The results of the experimental investigation and the simulation are in good agreement with each other.

The Fatigue Behavior and Delamination Properties in Fiber Reinforced Aramid Laminates -Case (I) : AFRP/Al Laminates-

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.343-349
    • /
    • 2003
  • The fuselage-wing intersection suffers from the cyclic bending moment of variable amplitude. Therefore, the influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in AFRP/Al laminate of fuselage-wing was investigated in this study. The cyclic bending moment fatigue test in AFRP/Al laminate was performed with five levels of bending moment. The shape and size of the delamination Lone formed along the fatigue crack between aluminum sheet and aramid fiber-adhesive layer were measured by an ultrasonic C-scan. The relationships between da/dN and ΔK, between the cyclic bending moment and the delamination zone size, and between the fiber bridging behavior and the delamination zone were studied. As results, fiber failures were not observed in the delamination zone in this study, the fiber bridging modification factor increases and the fatigue crack growth rate decrease and the shape of delamination zone is semi-elliptic with the contour decreasing non-linearly toward the crack tip.

반복-굽힘 모멘트의 진폭에 따른 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전 거동 (The Delamination and Fatigue Crack Propagation Behavior in A15052/AFRP Laminates Under Cyclic Bending Moment)

  • 송삼홍;김철웅
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1277-1286
    • /
    • 2001
  • Aluminum 5052/Aramid Fiber Reinforced Plastic(Al5052/AFRP) laminates are applied to the fuselage-wing intersection. The Al5052/AFRP laminates suffer from the cyclic bending moment of variable amplitude during the service. Therefore, the influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al5052/AFRP laminate was investigated in this study. Al5052/AFRP laminate composite consists of three thin sheets of Al5052 and two layers of unidirectional aramid fibers. The cyclic bending moment fatigue tests were performed with five different levels of bending moment. The shape and size of the delamination zone formed along the fatigue crack between Al5052 sheet and aramid fiber-adhesive layer were measured by an ultrasonic C-scan. The relationships between da/dN and ΔK, between the cyclic bending moment and the delamination zone size, and between the fiber bridging mechanism and the delamination zone were studied. Fiber failures were not observed in the delamination zone in this study. It represents that the fiber bridging modification factor should turn out to increase and that the fatigue crack growth rate should decrease. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip.

반복-굽힘 모멘트가 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전에 미치는 영향 (The Influence of Cyclic-bending Moment on the Delamination Zone and the Fatigue Crack Propagation in A15052/AFRP Laminates)

  • 송삼홍;김철웅
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.231-237
    • /
    • 2000
  • A15052/AFRP laminates were developed principally to obtain a material with good fatigue strength, in which possible cracks would grow very slowly. Weight savings of more than 30% should be attainable in practice. Also, the crack bridging fibers could still was carry a significant part of the load over the crack, thus the COD and stress intensity factor was reduced at the crack tip. A15052/ AFRP laminates consists of three thin sheets of 5052-H34 aluminum alloy and two layers of [0] unidirectional aramid fiber prepreg. The cyclic-bending moment test was investigated based on applying the five kinds of bending moments. The size of the delamination zone produced between 5052-H34 aluminum alloy sheets and fiber-adhesive layers was measured from ultrasonic C-scan pictures taken around the fatigue crack. In addition, the relationship between the cyclic-bending moment and the delamination zone size was studied and the effect of fiber bridging mechanism was also considered.

  • PDF

Mechanical behavior and buckling failure of sharp-notched circular tubes under cyclic bending

  • Lee, Kuo-Long
    • Structural Engineering and Mechanics
    • /
    • 제34권3호
    • /
    • pp.367-376
    • /
    • 2010
  • In this paper, an experimental investigation of the mechanical behavior and buckling failure of sharp-notched circular tubes subjected to cyclic bending is discussed. The unnotched and sharp-notched circular tubes of SUS 304 stainless steel were tested under symmetric curvature-controlled cyclic bending. It was found from moment-curvature curves that the loops show cyclic hardening and gradually steady after a few cycles for all tested tubes. The ovalization-curvature curves show an unsymmetric, ratcheting and increasing manner with the number of cycles. In addition, it was found that six almost parallel lines corresponding to unnotched and five different notch-depth (0.2, 0.4, 0.6, 0.8 and 1.0 mm) tubes were noted from the experimental relationship between the cyclic controlled curvature and the number of cycles necessary to produce buckling on a log-log scale. An empirical formulation was proposed so that it could be used for simulating the aforementioned relationship. By comparing with the experimental finding, the simulation was in good agreement with the experimental data.

소컷 및 원공 주위의 피로균열 형태변화와 층간분리거동 (I) - 아라미드섬유 강화 금속적층재의 경우 - (Fatigue Crack and Delamination Behavior in the Composite Material Containing n Saw-cut and Circular Hole (I) - Aramid Fiber Reinforced Metal Laminates -)

  • 송삼홍;김철웅
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.58-65
    • /
    • 2003
  • The aramid fiber reinforced metal laminates(AFRMLs) used for the wing part fair flight suffer the cyclic bending moment of variable amplitude during service. The fatigue crack propagation and delamination behavior in AFRMLs containing a saw-cut and circular hole was investigated using the average stress criterion(ASC) model. Mechanical tests were carried out using the cyclic bending moment of 4.9 N . m and delamination was observed by ultrasonic C-scan images. In case of AFRMLs containing a saw-cut fatigue crack propagated in aluminum matrix, inducing delamination. However, in case of AFRMLs containing a circular hole, delamination formed with two types under cyclic bending moment of 4.9 N . m. First, delamination formed along the fatigue crack in aluminum matrix. Second, delamination formed without any fatigue crack around the circular hole. Therefore, delamination was formed depending on the stress distribution near the circular hole.

Endochronic simulation for the response of 1020 carbon steel tubes under symmetric and unsymmetric cyclic bending with or without external pressure

  • Lee, Kuo-Long;Hsu, Chien-Min;Hung, Chao-Yu
    • Steel and Composite Structures
    • /
    • 제8권2호
    • /
    • pp.99-114
    • /
    • 2008
  • This paper presents the theoretical simulation of the response of 1020 carbon steel tubes subjected to symmetric and unsymmetric cyclic bending with or without external pressure by using the endochronic theory. Experimental data of 1020 carbon steel tubes tested by Corona and Kyriakides (1991) were used for evaluating the theoretical simulation. Several cases were considered in this study, they were symmetric bending without external pressure, symmetric bending with external pressure, unsymmetric bending without external pressure, and unsymmetric bending with external pressure. The responses of the moment-curvature, ovalization-curvature and ovalization-number of cycles with or without external pressure were discussed. It has been shown that the theoretical simulations of the responses correlate well with the experimental data.

A Study on the Bending and Seismic Performance of High Performance Cold Forming Composite Beam

  • Choi, Young Han;Kim, Sung Bae;Hong, Hyung Ju;Kim, Sang Seup
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1772-1783
    • /
    • 2018
  • Nowadays, the researches about composite structure system are being implemented in various fields, and many steel structures are designed based on that. In this study, the bending and seismic performance of the newly developed high-performance cold forming composite beam are evaluated by several experiments. As a result of the bending performance test, the bending moment of beam was increased stably depending on the depth and plate thickness of beam, and it is considered that the bending moment can be evaluated by the equation of a composite beam design. As a result of the seismic performance test, it was verified that sufficient seismic performance was obtained despite the increase of a negative moment rebar and depth of beam. In addition, the nominal bending moment has obtained the strength above the plastic bending moment, and also the plastic rotation angle has satisfied the requirement of composite intermediate moment frame.

Employing a fiber-based finite-length plastic hinge model for representing the cyclic and seismic behaviour of hollow steel columns

  • Farahi, Mojtaba;Erfani, Saeed
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.501-516
    • /
    • 2017
  • Numerical simulations are prevalently used to evaluate the seismic behaviour of structures. The accuracy of the simulation results depends directly on the accuracy of the modelling techniques employed to simulate the behaviour of individual structural members. An empirical modelling technique is employed in this paper to simulate the behaviour of column members under cyclic and seismic loading. Despite the common modelling techniques, this technique is capable of simulating two important aspects of the cyclic and seismic behaviour of columns simultaneously. The proposed fiber-based modelling technique captures explicitly the interaction between the bending moment and the axial force in columns, and the cyclic deterioration of the hysteretic behaviour of these members is implicitly taken into account. The fiber-based model is calibrated based on the cyclic behaviour of square hollow steel sections. The behaviour of several column archetypes is investigated under a dual cyclic loading protocol to develop a benchmark database before the calibration procedure. The dual loading protocol used in this study consists of both axial and lateral loading cycles with varying amplitudes. After the calibration procedure, a regression analysis is conducted to derive an equation for predicting a varying calibrated modelling parameter. Finally, several nonlinear time-history analyses are conducted on a 6-story steel special moment frame in order to investigate how the results of numerical simulations can be affected by employing the intended modelling technique for columns instead of other common modelling techniques.

모래지반에서 재하방법이 반복수평하중을 받는 말뚝의 거동에 미치는 영향 (Effects of Loading Method on the Behavior of Laterally Cyclic Loaded Piles in Sand)

  • 백규호;김영준;이승연
    • 한국지반공학회논문집
    • /
    • 제27권3호
    • /
    • pp.63-73
    • /
    • 2011
  • 반복수평하중을 받는 말뚝의 거동은 반복하중의 크기와 재하횟수 뿐만 아니라 반복하중의 재하방법(한방향 또는 양방향 재하)에도 영향을 받는다. 본 연구에서는 반복수평하중의 재하방법이 모래지반에 타입된 항타말뚝의 거동에 미치는 영향을 조사하기 위해서 가압토조를 이용한 모형말뚝재하시험을 수행하였다. 실험결과에 따르면 반복수평하중을 한방향으로 받는 말뚝의 누적 영구수평변위는 최초 재하방향과 같은 방향으로 발생하지만, 반복하중을 양방향으로 받는 말뚝의 영구수평변위는 최초 재하방향과 반대 방향으로 발생하였다. 그리고 이와 같은 반복하중의 재하방법에 따른 말뚝 영구수평변위의 변화로 인해 한방향 반복재하는 말뚝의 반복극한수평지지력을 감소시키고 양방향 반복 재하는 말뚝의 반복극한수평지지력을 증가시켰으며, 수평하중의 반복재하횟수가 많아질수록 하중의 재하방법에 따른 말뚝의 반복극한수평지지력 차이는 더욱 확대되었다. 또한 반복수평하중의 재하방법에 따른 말뚝 주변지반의 다짐도 차이로 인해 수평하중이 반복재하되는 동안 말뚝에 발생하는 최대 휨모멘트는 반복하중이 양방향보다 한방향으로 재하되는 경우에 더 크게 나타났다. 그러나 극한상태에서 말뚝에 발생한 최대 휨모멘트는 반복하중이 한방향보다 양방향으로 재하된 경우에 그리고 반복재하를 받은 경우보다 그렇지 않은 경우에 더 큰 것으로 조사되었다.