• Title/Summary/Keyword: Cyclic Bending

Search Result 283, Processing Time 0.023 seconds

Failure life estimation of sharp-notched circular tubes with different notch depths under cyclic bending

  • Lee, Kuo-Long;Chang, Kao-Hua;Pan, Wen-Fung
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.387-404
    • /
    • 2016
  • In this paper, the response and failure of sharp-notched 6061-T6 aluminum alloy circular tubes with five different notch depths of 0.4, 0.8, 1.2, 1.6 and 2.0 mm subjected to cyclic bending were experimentally and theoretically investigated. The experimental moment-curvature relationship exhibits an almost steady loop from the beginning of the first cycle. And, the notch depth has almost no influence on its relationship. However, the ovalization-curvature relationship exhibits a symmetrical, increasing, and ratcheting behavior as the number of cycles increases. In addition, a higher notch depth of a tube leads to a more severe unsymmetrical trend of the ovalization-curvature relationship. Focusing on the aforementioned relationships, the finite element software ANSYS was used to continue the related theoretical simulation. Furthermore, the five groups of tubes tested have different notch depths, from which five unparallel straight lines can be observed from the relationship between the controlled curvature and the number of cycles required to produce failure in the log-log scale. Finally, a failure model was proposed to simulate the aforementioned relationship. Through comparison with the experimental data, the proposed model can properly simulate the experimental data.

Mechanical performance of a new I-section weak-axis column bending connection

  • Lu, Linfeng;Xu, Yinglu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.31-44
    • /
    • 2018
  • This paper reports a novel steel beam-to-column connection suitable for use in the weak axis of I-section column. Monotonic and cyclic loading experimental investigations and numerical analysis of the proposed weak-axis connection were conducted, and the calculation procedure of the beam-column relative rotation angle and plastic rotation angle was developed and described in details. A comparative analysis of mechanical property and steel consumption were employed for the proposed I-section column weak-axis connection and box-section column bending connection. The result showed that no signs of fracturing were observed and the plastic hinge formed reliably in the beam section away from the skin plate under the beam end monotonic loading, and the plastic hinge formed much closer to the skin plate under the beam end cyclic loading. The fracture of welds between diaphragm and skin plate would cause an unstable hysteretic response under the column top horizontal cyclic loading. The proposed weak-axis connection system could not only simplify the design calculation progress when I-section column is adopted in frame structural design but also effectively satisfy the requirements of 'strong joint and weak member', as well as lower steel consumption.

Numerical simulation on the cyclic behavior of ultra-high performance concrete filled steel tubular column

  • Heng Cai;Fangqian Deng
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.693-707
    • /
    • 2023
  • In order to deeply reveal the working mechanism of ultra-high performance concrete (UHPC) filled steel tubular columns (UHPCFSTs) under cyclic loading, a three-dimension (3D) macro-mesoscale finite element (FE) model was established considering the randomness of steel fibers and the damage of UHPC. Model correctness and reliability were verified based on the experimental results. Next, the whole failure process of UHPC reinforced with steel fibers, passive confinement effect and internal force distribution laws were comprehensively analyzed and discussed. Finally, a simplified and practical method was proposed for predicting the ultimate bending strengths of UHPCFSTs. It was found that the non-uniform confinement effect of steel tube occurred when the drift ratio exceeded 0.5%, while the confining stress increased then decreased afterwards. There was preferable synergy between the steel tube and UHPC until failure. Compared with experimental results, the ultimate bending strengths of UHPCFSTs were undervalued by the current code provisions such as AISC360-10, EC4 and GB50936 with computed mean values (MVs) of 0.855, 0.880 and 0.836, respectively. The proposed practical method was highly accurate, as evidenced by a mean value of 1.058.

Evaluation of Fretting Fatigue Behavior of Aluminum Alloy(A17050-T7451) Under Cyclic Bending Load (알루미늄 합금(AI7050-T7451)의 반복 굽힘 하중하의 프레팅 피로거동 평가)

  • Kim, Jong-Sung;Yoon, Myung-Jin;Choi, Sung-Jong;Cho, Hyun-Deog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.25-34
    • /
    • 2010
  • Fretting damage reduces fatigue life of the material due to low amplitude cyclic sliding and changes in the contact surfaces of strongly connected machine and structures such as bolt, key, fixed rivet and connected shaft, which have relative slip of repeatedly very low frequency amplitude. In this study, the fretting fatigue behavior of 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were evaluated. The plain fatigue test and fretting fatigue test under cyclic bending load carried out commercial bending fatigue tester and specially devised equipments to cause fretting damage. From these experimental work, the following results obtained: (1) The plain fatigue limit for stress ratio R=-l was about 151MPa. (2) In case of fretting fatigue, fatigue limit for stress ratio R=-l about 72MPa, the fatigue limit for R=0 about 81MPa, and the fatigue limit for R=0.3 about 93MPa. (3) The fatigue limit reduction rates by the fretting damage were about 52%(R=-1), 46%(R=0) and 38%(R=0.3) respectively. (4) The fatigue limit reduction rate decreased with stress ratio increase. In fretting bending test, as stress ratio increased, occurrence of initial oblique crack by fretting decreased or phased out, so that fracture surfaces were formed by plain fatigue crack occurrence, and such tendency was notable as stress amplitude increased. (5) Tire tracks and rubbed scars were observed in the fracture surface and contacted surface.

Reliability of metal films on flexible polymer substrate during cyclic bending deformations

  • Kim, Byeong-Jun;Jeong, Seong-Hun;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.244.1-244.1
    • /
    • 2016
  • Recently, the technology for flexible electronics such as flexible smart phone, foldable displays, and bendable battery is under active development. With approaching the real commercialization of flexible electronics, the electrical and mechanical reliability of flexible electronics have become significantly important because they will be used under various mechanical deformations such as bending, twisting, stretching, and so on. These mechanical deformations result in performance degradation of electronic devices due to several mechanical problems such as cracking, delamination, and fatigue. Therefore, the understanding of relationship between mechanical loading and electrical performance is one of the most critical issues in flexible electronics for expecting the lifetime of products. Here, we have investigated the effect of monotonic tensile and cyclic deformations on metal interconnect to provide a guideline for improving the reliability of flexible interconnect.

  • PDF

Fatigue Assessment of Hybrid Composite Joint for the Tilting Car Body (틸팅 차량용 차체의 하이브리드 복합재 접합체결부의 내구성 평가)

  • Jung, Dal-Woo;Choi, Nak-Sam;Kim, Jung-Seok;Seo, Sueng-Il;Jo, Se-Hyun
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.357-361
    • /
    • 2006
  • Fatigue fracture behavior of a hybrid joint part with bolting was evaluated in comparison to the case of static fracture. Hybrid joint part specimens for bending test were made with layers of CFRP and aluminum honeycomb. Characteristic fracture behaviors of those specimens were obviously different under static and cyclic loads. Static bending load showed the shear deformation at the honeycomb core, whereas cyclic bending load caused the delamination between CFRP skin layers and honeycomb core. Experimental results obtained by static and fatigue tests were considered in modifications of design parameters of the hybrid joint.

  • PDF

CPT-based p-y analysis for mono-piles in sands under static and cyclic loading conditions

  • Kim, Garam;Kyung, Doohyun;Park, Donggyu;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.313-328
    • /
    • 2015
  • In the present study, a CPT-based p-y analysis method was proposed for offshore mono-piles embedded in sands. Static and cyclic loading conditions were both taken into account for the proposed method. The continuous soil profiling capability of CPT was an important consideration for the proposed method, where detailed soil profile condition with depth can be readily incorporated into the analysis. The hyperbolic function was adopted to describe the non-linear p-y curves. For the proposed hyperbolic p-y relationship, the ultimate lateral soil resistance $p_u$ was given as a function of the cone resistance, which is directly introduced into the analysis as an input data. For cyclic loading condition, two different cyclic modification factors were considered and compared. Case examples were selected to check the validity of the proposed CPT-based method. Calculated lateral displacements and bending moments from the proposed method were in good agreement with measured results for lateral displacement and bending moment profiles. It was observed the accuracy of calculated results for the conventional approach was largely dependent on the selection of friction angle that is to be adopted into the analysis.

Analysis of dry friction hysteresis in a cable under uniform bending

  • Huang, Xiaolun;Vinogradov, Oleg
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.63-80
    • /
    • 1994
  • A cable is considered as a system of helical wires and a core with distributed dry friction forces at their interfaces. Deformations of the cable subjected to a uniform bending are analyzed. It is shown that there is a critical bending curvature when a slip at the wire-core interface occurs. It originates at the neutral axis of the cross section of the cable and then spreads symmetrically over the cross section with the increase of bending. The effect of slippage on the cable stiffness is investigated. This model is also used to analyze a cable under the quasi-static cyclic bending. Explicit expression for the hysteretic losses per cycle of bending is derived. Numerical examples are given to show the influence of dry friction and helix angle on the bending stiffness and hysteretic losses in the cable.

A Study on the Bending and Seismic Performance of High Performance Cold Forming Composite Beam

  • Choi, Young Han;Kim, Sung Bae;Hong, Hyung Ju;Kim, Sang Seup
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1772-1783
    • /
    • 2018
  • Nowadays, the researches about composite structure system are being implemented in various fields, and many steel structures are designed based on that. In this study, the bending and seismic performance of the newly developed high-performance cold forming composite beam are evaluated by several experiments. As a result of the bending performance test, the bending moment of beam was increased stably depending on the depth and plate thickness of beam, and it is considered that the bending moment can be evaluated by the equation of a composite beam design. As a result of the seismic performance test, it was verified that sufficient seismic performance was obtained despite the increase of a negative moment rebar and depth of beam. In addition, the nominal bending moment has obtained the strength above the plastic bending moment, and also the plastic rotation angle has satisfied the requirement of composite intermediate moment frame.

Thermal Fatigue Life Prediction of Alumina by Finite Difference Model (유한 차분 모델을 이용한 알루미나의 열피로 수명 예측)

  • 이홍림;한봉석
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.229-235
    • /
    • 1993
  • Thermal history and thermal stress of alumina specimen, which occured from thermal shock process, were calculated by finite difference method. Stress intensity factor and crack growth in cyclic thermal fatigue were calculated from single thermal shock temperature history and thermal stress. Cyclic thermal life were estimated by bending strength after cyclic thermal shock under critical thermal shock temperature. Calculated stress intensity factor was compared with real experimental thermal fatigue life of specimen. Fatigue life until critical stress intensity factor and real experimental result were comparable.

  • PDF