• Title/Summary/Keyword: Cyclic variation

Search Result 238, Processing Time 0.023 seconds

A Study of Variation of Wave-induced Stresses in a Seabed (파랑하중에 의한 해저지반의 응력변화에 대한 연구)

  • 장병욱;박영권;우철웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.79-89
    • /
    • 1996
  • It is expected that the soil hehaviours in the seahed subjected to cyclic wave loads are much different from that on the ground Cyclic shear stresses developed below the ocean bed as a result of a passing wave train may progressively build up pore pressure in certain soils. Such build-up pore pressure may be developed dynamic behaviour such as liquefaction and significant deformation of the seabed. Currently available analytical and testing methods for the seabed subjected to cyclic wave loads are not general. The purpose of the study are to provide a test method in laboratory and to analyse the mechanism of wave-induced stresses and liquefactions potentials of the unsaturated silty marine sand. It is showed that the test set-up made especially for this study delivers exactly oscillatory wave pressures of the form of sine function. Laboratory test results defining the cyclic shear strength of the unsaturated porous medium that is homogenously sedimented. It is understood that the pore water pressure due to induced-waves is not accumulated as the wave number increases but reveals periodical change on the still water surface. The magnitude of the pore water pressure tends to be attenuated radically with a certain time lag under the action of both high and low waves as depth increases.

  • PDF

MODELING OF NONLINEAR CYCLIC LOAD BEHAVIOR OF I-SHAPED COMPOSITE STEEL-CONCRETE SHEAR WALLS OF NUCLEAR POWER PLANTS

  • Ali, Ahmer;Kim, Dookie;Cho, Sung Gook
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.89-98
    • /
    • 2013
  • In recent years steel-concrete composite shear walls have been widely used in enormous high-rise buildings. Due to high strength and ductility, enhanced stiffness, stable cycle characteristics and large energy absorption, such walls can be adopted in the auxiliary building; surrounding the reactor containment structure of nuclear power plants to resist lateral forces induced by heavy winds and severe earthquakes. This paper demonstrates a set of nonlinear numerical studies on I-shaped composite steel-concrete shear walls of the nuclear power plants subjected to reverse cyclic loading. A three-dimensional finite element model is developed using ABAQUS by emphasizing on constitutive material modeling and element type to represent the real physical behavior of complex shear wall structures. The analysis escalates with parametric variation in steel thickness sandwiching the stipulated amount of concrete panels. Modeling details of structural components, contact conditions between steel and concrete, associated boundary conditions and constitutive relationships for the cyclic loading are explained. Later, the load versus displacement curves, peak load and ultimate strength values, hysteretic characteristics and deflection profiles are verified with experimental data. The convergence of the numerical outcomes has been discussed to conclude the remarks.

Cyclic performance of steel fiber-reinforced concrete exterior beam-column joints

  • Oinam, Romanbabu M.;Kumar, P.C. Ashwin;Sahoo, Dipti R.
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.533-546
    • /
    • 2019
  • This study presents an experimental investigation on six beam-column joint specimens under the lateral cyclic loading. The aim was to explore the effectiveness of steel fiber-reinforced concrete (SFRC) in reducing the transverse shear stirrups in beam-column joints of the reinforced concrete (RC) frames with strong-columns and weak-beams. Two RC and four SFRC specimens with different types of reinforcement detailing and steel fibers of volume fraction in the range of 0.75-1.5% were tested under gradually increasing cyclic displacements. The main parameters investigated were lateral load-resisting capacity, hysteresis response, energy dissipation capacity, stiffness degradation, viscous damping variation, and mode of failure. Test results showed that the diagonally bent configuration of beam longitudinal bars in the beam-column joints resulted in the shear failure at the joint region against the flexural failure of beams having straight bar configurations. However, all SFRC specimens exhibited similar lateral strength, energy dissipation potential and mode of failure even in the absence of transverse steel in the beam-column joints. Finally, a methodology has been proposed to compute the shear strength of SFRC beam-column joints under the lateral loading condition.

Frequency of Solar Spotless Days and Flare Index as Indices of Solar Cycle Activity

  • Oh, Suyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.145-148
    • /
    • 2014
  • There was a research on the prolongation of solar cycle 23 by the solar cyclic variation of solar, interplanetary geomagnetic parameters by Oh & Kim (2013). They also suggested that the sunspot number cannot typically explain the variation of total solar irradiance any more. Instead of the sunspot number, a new index is introduced to explain the degree of solar activity. We have analyzed the frequency of sunspot appearance, the length of solar cycle, and the rise time to a solar maximum as the characteristics of solar cycle. Then, we have examined the predictability of solar activity by the characteristics of preceding solar cycle. We have also investigated the hemispheric variation of flare index for the periods that the leading sunspot has the same magnetic polarity. As a result, it was found that there was a good correlation between the length of preceding solar cycle and spotless days. When the length of preceding solar cycle gets longer, the spotless days increase. It is also shown that the shorter rise time to a solar maximum is highly correlated with the increase of sunspots at a solar maximum. Therefore, the appearance frequency of spotless days and the length of solar cycle are more significant than the general sunspot number as an index of declining solar activity. Additionally, the activity of flares leads in the northern hemisphere and is stronger in the hemisphere with leading sunspots in positive polarity than in the hemisphere with leading sunspots in negative polarity. This result suggests that it is necessary to analyze the magnetic polarity's effect on the flares and to interpret the period from the solar maximum to solar maximum as the definition of solar cycle.

Analysis of Performance and Emissions Characteristics on Gasoline Engine for Hybrid Vehicles with Optimum EGR Rate and the Cylinder Variation of EGR Rate (하이브리드용 가솔린 엔진에서 최적 EGR적용 및 실린더간 편차에 따른 성능 및 배출가스 특성 분석)

  • Park, Cheol-Woong;Choi, Young;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.87-95
    • /
    • 2009
  • EGR(Exhaust gas recirculation) provides an important contribution in achieving the development targets of low fuel consumption and low exhaust emission levels on gasoline engine for hybrid vehicles while allowing stoichiometric fuelling to be retained for applications using the three-way catalysts. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate in gasoline engine for hybrid vehicles should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR with optimum EGR rate on fuel economy, combustion stability, engine performance and exhaust emissions. As the engine load becomes higher, the optimum EGR rate tends to increase. The increase in engine load and reduction in engine speed make the fuel consumption better. The fuel consumption was improved by maximum 5.5% at low speed, high load operating condition. As the simulated EGR variation on a cylinder is increased, due to the increase in cyclic variation, the fuel consumption and emissions characteristics were deteriorated simultaneously. To achieve combustion stability without a penalty in fuel consumption and emissions, the cylinder-to-cylinder variations must be maintained under 10%.

Time-synchronized measurement and cyclic analysis of ultrasound imaging from blood with blood pressure in the mock pulsatile blood circulation system (박동 혈액 순환 모의 시스템에서 시간 동기화된 혈압 및 혈액의 초음파 영상 측정 및 주기적 분석)

  • Min, Soohong;Jin, Changzhu;Paeng, Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.361-369
    • /
    • 2017
  • Hemodynamic information in the carotid artery bifurcation is very important for understanding the development and progression mechanisms of cerebrovascular disease and for its early diagnosis and prediction of the progress. In this paper, we constructed a mock pulsatile blood circulation system using an anthropomorphic elastic vessel of the carotid artery bifurcation and ex vivo pig blood to acquire ultrasound images from blood and vessels synchronized with internal pressure while controlling the blood flow. Echogenicity, blood flow velocity, and blood vessel wall motion from the ultrasound images, and internal blood pressure were extracted over a cycle averaged from five cycles when the pulsatile pump rates are 20 r/min, 40 r/min, and 60 r/min. As a result, respectively, the peak systolic blood flow velocities were 20 cm/s, 25 cm/s, and 40 cm/s, the blood pressure differences were 30 mmHg, 70 mmHg, and 85 mmHg, the arterial walls were expanded to 0.05 mm, 0.15 mm, and 0.25 mm. Time-delayed cyclic variation of echogenicity compared to blood flow and pressure was observed, but the variation was minimal at 20 r/min. Time-synchronized cyclic variations of these parameters are important information for accurate input parameters and validation of the computational hemodynamic experiments which will provide useful information for the development and progress mechanisms of carotid artery stenosis.

Dimensional Responses of Wood Under Cyclical Changing Temperature at Constant Relative Humidity

  • Yang, Tiantian;Ma, Erni;Shi, Yi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.539-547
    • /
    • 2015
  • To investigate dimensional responses of wood under dynamic temperature condition, poplar (populous euramericana Cv.) specimens, 20 mm in radial (R) and tangential (T) directions with two thicknesses of 4 and 10 mm along the grain, were exposed to cyclic temperature changes in square wave between $25^{\circ}C$ and $40^{\circ}C$ at 60% relative humidity (RH) for three different cycling periods of 6 h, 12 h and 24 h. R and T dimensional changes measured during the cycling gave the following results: 1) Transverse dimensional changes of the specimens were generally square but at an opposite phase and lagged behind the imposed temperature changes. The phase lag was inversely correlated with cycling period, but positively related to specimen thickness, while the response amplitude was directly proportional to cycling period, but in a negative correlation with specimen thickness. 2) The specimens showed swelling hysteresis behavior. The heat shrinkage coefficient (HSC) became greater as cycling period increased or specimen thickness decreased. 3) Dimensional changes of the specimens produced deformation accumulation during repeated adsorption and desorption. The deformation accumulating ratio decreased with an increase in cycling period and specimen thickness. 4) Wood suffered 1.5 times as many dimensional changes per unit temperature variation as per unit humidity variation, and this deformation behaved even more seriously under static condition.

Effect of Thermal Cycling on Shape Memory Effect and Stabilization of Parent Phase in Fe-21%Mn Alloy (Fe-21%Mn 합금의 형상기억효과와 모상의 안정화에 미치는 반복열처리의 영향)

  • Jin, W.;Choi, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.3
    • /
    • pp.31-38
    • /
    • 1991
  • Effect of thermal cycling on shape memory effect and stabilization of austenite was investigated in Fe-21%Mn alloy. The thermal cyclic treatment was carried out with two types, room temperature${\leftrightarrow}215^{\circ}C$ and room temperature${\leftrightarrow}260^{\circ}C$. In case of the room temperature${\leftrightarrow}215^{\circ}C$, the SME was rapidly increased up to 3 cycles and maintained nearly constant value regardless of further cycles. In case of the room temperature${\leftrightarrow}260^{\circ}C$, however, the SME was increased with increasing the thermal cycle up to 5 cycles and decreased gradually with further cycle. The variation of the ${\varepsilon}$ martensite volume pet with the thermal cycle was in good agreement with the variation of the SME. Therefore, the change of the SME due to the cyclic treatment was explained with the change of the ${\varepsilon}$ martensite content. As the thermal cycle was increased, the $M_s$ temperature was decreased, and the $A_s$ and $A_f$ temperatures were increased, respectively.

  • PDF

Permeation Behavior of Microfiltration Membrane by Alumina Colloidal Suspension under a Cyclic Variation in TMP (운전압력의 순환변화에 따른 알루미나 현탁액의 정밀여과 투과거동)

  • Nam, Suk-Tae;Han, Myeong-Jin
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.13-21
    • /
    • 2011
  • This study investigated the fouling behavior of $Al_2O_3$ colloids on polyethylene microfiltration membrane. To examine the effect of operation variation on fouling, operating pressure was increased from 0.49 to 1.96 bar along with time elapses and then was reduced to 0.49 bar reversely. A hysteresis behavior was observed in the membrane permeate flux over pressure, revealing different fluxes at the same pressure according to the pressure control type, increasing and decreasing. Permeate resistance and its rate of increase was higher in the decreasing pressure cycle than in the increasing pressure cycle. At the initial period of filtration, fouling mechanism for the both cycles was governed by the cake filtration. The degree of fouling was higher in the decreasing pressure cycle compared with in the increasing pressure cycle.

A Time-to-Digital Converter with PVT Variation Compensation Capability (PVT 변화 보상 기능을 가지는 시간-디지털 변환기)

  • Eunho Shin;Jongsun Kim
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.234-238
    • /
    • 2023
  • In this paper, we propose a time-to-digital converter (TDC) with compensation capability for PVT (process, voltage, and temperature) variations. A typical delay line-based TDC measures time based on the inverter's propagation delay, making it fundamentally sensitive to PVT variations. This paper presents a method to minimize the resolution change of TDC by compensating for the propagation delay caused by the PVT variations. Additionally, it dopts Cyclic Vernier TDC (CVTDC) structure to provide a wide input detection range. The proposed CVTDC with PVT compensation function is designed using a 45nm CMOS process, consumes 8mW of power, offers a TDC resolution of 5 ps, and has an input detection range of about 5.1 ns.