• Title/Summary/Keyword: Cycles To Failure

Search Result 421, Processing Time 0.034 seconds

Comparison of the fatigue limit of fiber-reinforced composites and stainless steel wires when attached to the tooth surface for anchorage reinforcement (고정원 강화를 위해 치면에 부착한 fiber-reinforced composite과 스테인리스강 와이어의 피로한도 비교)

  • Kim, Moon-Jung;Park, Soo-Byung
    • The korean journal of orthodontics
    • /
    • v.35 no.4 s.111
    • /
    • pp.302-311
    • /
    • 2005
  • This study was performed to compare the fatigue limit of stainless steel wires and Fiber-reinforced composites (FRC) under conditions of permitting physiologic tooth movement. and to evaluate the clinical value of FRCs which was used to reinforce the anchorage unit. The stainless steel wire groups were divided into round and rectangular wire groups. The FRC groups were divided into uni-directional and woven groups, with resin coating and without resin coating in the Proximal area After the number of cycles to failure of each of the 6 groups were measured within the $5{\times}10^5\;cycle$ fatigue limit simulating the orthodontic treatment period. the fatigue limit of each group was compared with each other The findings of this study were as follows. In stainless steel wires, the fatigue limit of rectangular wires were higher than that of round wires. But there was no statistically significant difference (p>0.05). In FRCs with resin coating and without resin coating in the interproximal area, the fatigue limit of uni-directional type was higher than that of the woven type (p<0.05). In uni-directional and woven type FRCs, the fatigue limit of FRC with resin coating in the interproximal area was higher thar that of FRC without resin coating (P<0.05) As the FRCs and stainless steel wires did not fracture until the $5{\times}10^5\;cycle$ fatigue limit which clinically is useful. it is sufficient to use FRC and stainless steel wire for reinforcing anchorage. When esthetics is important and the attachment of additional devices are necessary. it seems sufficient to use FRC as anchorage reinforcement.

Evaluation of Static and Fatigue Performances of Decks Reinforced with GFRP Rebar for Reinfocement Ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 정적 및 피로성능 평가)

  • You, Young-Jun;Park, Young-Hwan;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.491-497
    • /
    • 2014
  • The corrosion of steel reinforcement in reinforced concrete bridge decks significantly affects the degradation of the capacity. Due to the advantageous characteristics such as high tensile strength and non-corrosive property, fiber reinforced polymer (FRP) has been gathering much interest from designers and engineers for possible usage as a alternative reinforcement for a steel reinforcing bar. However, its application has not been widespread, because there data for short- and long-term performance data of FRP reinforced concrete members are insufficient. In this paper, seven full-scale decks with dimensions of $4000{\times}3000{\times}240mm$ were prepared and tested to failure in the laboratory. The test parameter was the bottom reinforcement ratio in transverse direction. The decks were subjected to various levels of concentrated cyclic load with a contact area of $577{\times}231mm$ to simulate the vehicle loading of DB-24 truck wheel loads acting on the center span of the deck. It was observed that the glass FRP (GFRP) reinforced deck on a restraint girder is strongly effected to the level of the applied load rather than the bottom reinforcement ratio. The study results showed that the maximum load less than 58% of the maximum static load can be applied to the deck to resist a fatigue load of 2 million cycles. The fatigue life of the GFRP decks from this study showed the lower and higher fatigue performance than that of ordinary steel and CFRP rebar reinforced concrete deck. respectively.

Stability of the prosthetic screws of three types of craniofacial prostheses retention systems

  • Lanata-Flores, Antonio Gabriel;Sigua-Rodriguez, Eder Alberto;Goulart, Douglas Rangel;Bomfim-Azevedo, Veber Luiz;Olate, Sergio;de Albergaria-Barbosa, Jose Ricardo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.6
    • /
    • pp.352-357
    • /
    • 2016
  • Objectives: This study aimed to evaluate the stability of prosthetic screws from three types of craniofacial prostheses retention systems (bar-clip, ball/O-ring, and magnet) when submitted to mechanical cycling. Materials and Methods: Twelve models of acrylic resin were used with implants placed 20 mm from each other and separated into three groups: (1) bar-clip (Sistema INP, São Paulo, Brazil), (2) ball/O-ring (Sistema INP), and (3) magnet (Metalmag, São Paulo, Brazil), with four samples in each group. Each sample underwent a mechanical cycling removal and insertion test (f=0.5 Hz) to determine the torque and the detorque values of the retention screws. A servo-hydraulic MTS machine (810-Flextest 40; MTS Systems, Eden Prairie, MN, USA) was used to perform the cycling with 2.5 mm and a displacement of 10 mm/s. The screws of the retention systems received an initial torque of 30 Ncm and the torque values required for loosening the screw values were obtained in three cycles (1,080, 2,160, and 3,240). The screws were retorqued to 30 Ncm before each new cycle. Results: The sample was composed of 24 screws grouped as follows: bar-clip (n=8), ball/O-ring (n=8), and magnet (n=8). There were significant differences between the groups, with greater detorque values observed in the ball/O-ring group when compared to the bar-clip and magnet groups for the first cycle. However, the detorque value was greater in the bar-clip group for the second cycle. Conclusion: The results of this study indicate that all prosthetic screws will loosen slightly after an initial tightening torque, also the bar-clip retention system demonstrated greater loosening of the screws when compared with ball/O-ring and magnet retention systems.

Removal torque of a two-piece zirconia abutment with a novel titanium component in an internal connection implant system after dynamic cyclic loading (새로운 타이타늄 구성요소를 사용한 내부연결 임플란트용 지르코니아 지대주의 동적하중 후 나사 제거력)

  • Lee, Joo-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.2
    • /
    • pp.151-155
    • /
    • 2017
  • Purpose: The aim of this study was to evaluate screw removal torque of the two-piece zirconia abutment with the novel titanium component compared to the conventional one-piece titanium abutment in the internal connection implant before and after dynamic cyclic loading. Materials and methods: Two types of the abutment assemblies with internal connection were prepared and divided into the groups; titanium abutment-titanium abutment screw assemblies as control, and zirconia abutment-titanium socket-titanium abutment screw assemblies as experimental group. A total of 12 abutments and implants were used of six assemblies each group. Each assembly was tightened to 30 Ncm. A cyclic load of 300 N at an angle of 30 degrees in reference to the loading axis was applied until one million cycles or failure. The removal torque values (RTVs) of the abutment screws were measured with a digital torque gauge before and after cyclic loading. The RTVs of the pre load and post load were analyzed with t-test, and P-values < .05 were considered statistically significant. Results: The assemblies of both groups survived all after the dynamic cyclic loading test without screw loosening. The statistically significant differences were found between the mean RTVs before and after the cyclic loading in both groups (P < .05). The RTV differences for the control and the experimental group were $-7.25{\pm}1.50Ncm$ and $-7.33{\pm}0.93Ncm$, respectively. Statistical analysis revealed that the RTV differences in both groups were not significantly different from each other (P > .05). Conclusion: Within the limitation of this study, the two-piece zirconia abutment with the titanium component did not show a significant RTV difference of the abutment screw compared to the titanium abutment after dynamic cyclic loading.

Flexible Durability of Ultra-Thin FPCB (초박형 FPCB의 유연 내구성 연구)

  • Jung, Hoon-Sun;Eun, Kyoungtae;Lee, Eun-Kyung;Jung, Ki-Young;Choi, Sung-Hoon;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.69-76
    • /
    • 2014
  • In this study, we developed an ultra-thin flexible printed circuit board(FPCB) using the sputtered flexible copper clad laminate. In order to enhance the adhesion between copper and polyimide substrate, a NiMoNb addition layer was applied. The mechanical durability and flexibility of the ultra-thin FPCB were characterized by stretching, twisting, bending fatigue test, and peel test. The stretching test reveals that the ultra-thin FPCB can be stretched up to 7% without failure. The twisting test shows that the ultra-thin FPCB can withstand an angle of up to $120^{\circ}$. In addition, the bending fatigue test shows that the FPCB can withstand 10,000 bending cycles. Numerical analysis of the stress and strain during stretching indicates the strain and the maximum von Mises stress of the ultra-thin FPCB are comparable to those of the conventional FPCB. Even though the ultra-thin FPCB shows slightly lower durability than the conventional FPCB, the ultra-thin FPCB has enough durability and robustness to apply in industry.

Grain Boundary Character Changes and IGA/PWSCC Behavior of Alloy 600 Material by Thermomechanical Treatment (가공열처리에 의한 Alloy 600 재료의 결정립계특성 변화와 입계부식 및 1차측 응력부식균열 거동)

  • Kim, J.;Han, J.H.;Lee, D.H.;Kim, Y.S.;Roh, H.S.;Kim, G.H.;Kim, J.S.
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.919-925
    • /
    • 1999
  • Grain boundary characteristics and corrosion behavior of Alloy 600 material were investigated using the concept of grain boundary control by thermomechanical treatment(TMT). The grain boundary character distribution (GBCD) was analyzed by electron backscattered diffraction pattern. The effects of GBeD variation on intergranular at tack(JGA) and primary water stress corrosion cracking(PWSeC) were also evaluated. Changes in the fraction of coinci dence site lattice(CSL) boundaries in each cycle of TMT process were not distinguishable, but the total eSL boundary frequencies for TMT specimens increased about 10% compared with those of the commercial Alloy 600 material. It was found from IGA tests that the resistance to IGA was improved by TMT process. However, it was found from PWSCC test that repeating of TMT cycles resulted in the gradual decrease of the time to failure and the maximum load due to change in grain boundary characteristics, while the average crack propagation rate of primary crack increased mainly due to suppression of secondary crack propagation. It is considered that these corrosion characteristics in TMT specimens is attributed to 'fine tuning of grain boundary' mechanism.

  • PDF

Effects of maternal age on embryo quality and pregnancy outcomes using testicular sperm with intracytoplasmic sperm injection

  • Choi, Hye Won;Park, Yong-Seog;Lee, Sun-Hee;Lim, Chun Kyu;Seo, Ju Tae;Yang, Kwang Moon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.4
    • /
    • pp.221-227
    • /
    • 2016
  • Objective: The aim of this study was to evaluate the influence of maternal age on fertilization, embryo quality, and clinical pregnancy in patients undergoing intracytoplasmic sperm injection (ICSI) using testicular sperm from partners with azoospermia. Methods: A total of 416 ICSI cycles using testicular spermatozoa from partners with obstructive azoospermia (OA, n = 301) and non-obstructive azoospermia (NOA, n = 115) were analyzed. Female patients were divided into the following age groups: 27 to 31 years, 32 to 36 years, and 37 to 41 years. The rates of fertilization, high-quality embryos, clinical pregnancy, and delivery were compared across maternal age groups between the OA and NOA groups. Results: The rates of fertilization and high-quality embryos were not significantly different among the maternal age groups. Similarly, the clinical pregnancy and delivery rates were not significantly different. The fertilization rate was significantly higher in the OA group than in the NOA group (p< 0.05). Age-group analysis revealed that the fertilization and high-quality embryo rates were significantly different between the OA and NOA groups in patients aged 27 to 31 years old, but not for the other age groups. Although the clinical pregnancy and delivery rates differed between the OA and NOA groups across all age groups, significant differences were not observed. Conclusion: In couples using testicular sperm from male partners with azoospermia, pregnancy and delivery outcomes were not affected by maternal age. However, women older than 37 years using testicular sperm from partners with azoospermia should be advised of the increased incidence of pregnancy failure.

Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads (혼합모드 하중을 받는 균열시편의 피로균열진전거동 평가)

  • Han, Jeong Woo;Woo, Eun Taek;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.693-700
    • /
    • 2015
  • To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka's equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka's equation, and the Paris' equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%.

Reliability Assessment of Fatigue Crack Propagation using Response Surface Method (응답면기법을 활용한 피로균열진전 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Kyung, Kab Soo;Choi, Eun Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.723-730
    • /
    • 2008
  • Due to the higher ratio of live load to total loads of railway bridges, the accumulated damage by cyclic fatigue is significant. Moreover, it is highly possible that the initiated crack grows faster than that of highway bridges. Therefore, it is strongly needed to assess the safety for the accumulated damage analytically. The initiation and growth of fatigue-crack are related with the stress range, number of cycles, and the stiffness of the structural system. The stiffness of the structural system includes uncertainties of the planning, design, construction and maintenance, which varies as time goes. In this study, the authors developed the design and risk assessment techniques based on the reliability theories considering the uncertainties in load and resistance. For the probabilistic risk assessment of crack growth and the remaining life of the structures by the cyclic load of railway and subway bridges, response surface method (RSM) combined with first order second moment method were used. For composing limit state function, the stress range, stress intensity factor and the remaining life were selected as input important random variables to the RSM program. The probabilities of failure and the reliability indices of fatigue life for the considered specimen under cyclic loads were evaluated and discussed.

Effect of early chemoradiotherapy in patients with limited stage small cell lung cancer

  • Ha, In-Bong;Jeong, Bae-Kwon;Jeong, Hojin;Choi, Hoon-Sik;Chai, Gyu-Young;Kang, Myoung-Hee;Kim, Hoon Gu;Lee, Gyeong-Won;Na, Jae-Beom;Kang, Ki-Mun
    • Radiation Oncology Journal
    • /
    • v.31 no.4
    • /
    • pp.185-190
    • /
    • 2013
  • Purpose: We evaluated the effect of early chemoradiotherapy on the treatment of patients with limited stage small cell lung cancer (LS-SCLC). Materials and Methods: Between January 2006 and December 2011, thirty-one patients with histologically proven LS-SCLC who were treated with two cycles of chemotherapy followed by concurrent chemoradiotherapy and consolidation chemotherapy were retrospectively analyzed. The chemotherapy regimen was composed of etoposide and cisplatin. Thoracic radiotherapy consisted of 50 to 60 Gy (median, 54 Gy) given in 5 to 6.5 weeks. Results: The follow-up period ranged from 5 to 53 months (median, 22 months). After chemoradiotherapy, 35.5% of the patients (11 patients) showed complete response, 61.3% (19 patients) showed partial response, 3.2% (one patient) showed progressive disease, resulting in an overall response rate of 96.8% (30 patients). The 1-, 2-, and 3-year overall survival (OS) rates were 66.5%, 41.0%, and 28.1%, respectively, with a median OS of 21.3 months. The 1-, 2-, and 3-year progression free survival (PFS) rates were 49.8%, 22.8%, and 13.7%, respectively, with median PFS of 12 months. The patterns of failure were: locoregional recurrences in 29.0% (nine patients), distant metastasis in 9.7% (three patients), and both locoregional and distant metastasis in 9.7% (three patients). Grade 3 or 4 toxicities of leukopenia, anemia, and thrombocytopenia were observed in 32.2%, 29.0%, and 25.8%, respectively. Grade 3 radiation esophagitis and radiation pneumonitis were shown in 12.9% and 6.4%, respectively. Conclusion: We conclude that early chemoradiotherapy for LS-SCLC provides feasible and acceptable local control and safety.