• Title/Summary/Keyword: Cyclen

Search Result 13, Processing Time 0.019 seconds

Immobile Artificial Metalloproteases

  • Kim, Myoung-Soon;Suh, Jung-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1911-1920
    • /
    • 2005
  • Effective artificial metalloproteases have been designed by using cross-linked polystyrene as the backbone. Artificial active sites comprising Cu(II) complexes as the catalytic site and other metal centers or organic functionalities as binding sites were synthesized. The activity of Cu(II) centers for peptide hydrolysis was greatly enhanced on attachment to polystyrene. By placing binding sites in proximity to the catalytic centers, the ability to hydrolyze a variety of protein substrates at selected cleavage sites was improved. Thus far, the most advanced immobile artificial proteases have been obtained by attaching the aldehyde group in proximity to the Cu(II) complex of cyclen.

Theoretical Analysis and Prediction of Catalysts for Oxidative Decarboxylation of Melanin-Concentrating Hormone

  • Kim, Min-Gyum;Kim, Myoung-Soon;Park, Hwang-Seo;Lee, Sang-Youb;Suh, Jung-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1151-1155
    • /
    • 2007
  • In a previous study, a catalyst (A) was discovered for oxidative decarboxylation of melanin-concentrating hormone (MCH). To explain the catalytic action and to predict the structure of a new catalyst with improved activity, docking simulations were carried out for the complex formed between A and MCH. The simulations suggested that the three terminal groups of A form a hydrophobic pocket and that van der Waals interactions between the hydrophobic pocket and MCH play a role in stabilizing the MCH-A complex. Consequently, a new catalyst (B) was designed and synthesized in expectation of improved catalytic activity resulting from enhanced van der Waals interactions. The new catalyst, however, showed slightly lower catalytic activity. Lack of the accurate solution structure of MCH may be one of the factors associated with difficulties in prediction of improvement in catalytic activity by purely theoretical means. The results, however, revealed that variation of the acyl portion of the hydroxyproline portion may lead to improved catalysts.