• Title/Summary/Keyword: Cycle performance

Search Result 3,338, Processing Time 0.029 seconds

Analysis of Operation Conditions of a Reheat Cycle Gas Turbine for a Combined Cycle Power Plant (복합화력 발전용 재열사이클 가스터빈의 운전상태 분석)

  • Yoon, Soo-Hyoung;Jeong, Dae-Hwan;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.6 s.39
    • /
    • pp.35-44
    • /
    • 2006
  • Operation conditions of a reheat cycle gas turbine for a combined cycle power plant was analyzed. Based on measured performance parameters of the gas turbine, a performance analysis program predicted component characteristic parameters such as compressor air flow, compressor efficiency, efficiencies of both the high and low pressure turbines, and coolant flows. The predicted air flow and its variation with the inlet guide vane setting were sufficiently accurate. The compressor running characteristic in terms of the relations between air flow, pressure ratio and efficiency was presented. The variations of the efficiencies of both the high and low pressure turbines were also presented. Almost constant flow functions of both turbines were predicted. The current methodology and obtained data can be utilized for performance diagnosis.

Performance Characteristics on the Mixed Flow Type Absorption Chiller-Heater (혼합흐름 사이클용 흡수식 냉온수기의 성능특성)

  • Yoon, J.I.;Shin, G.B.;Park, S.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.351-360
    • /
    • 1996
  • This study focuses on the development and evaluation of the high efficiency absorption chiller-heater, which can be applied to a direct gas fired, double effect system with 40RT (508,000kJ) cooling capacity. The performance of the absorption chiller-heater is investigated through cycle simulation and experiment to obtain the system characteristics with the inlet tenperature of cooling, chilled water, and gas input flow rate. The efficiency of the different cycles has been studied and the simulation and experiment results show that higher coefficient of performance could be obtained for mixed flow cycle. The five percent difference was obtained from the comparison between experimental and cycle simulation results. As a result of this study, the optimum designs were determined based on the operating conditions and the coefficient of performance.

  • PDF

The Performance Analysis of Multi Stage Reheater Organic Rankine Cycle According to Heat Sink Temperature Change (냉열원 온도 변화에 따른 다단재열랭킨사이클의 성능해석)

  • Lee, Ho-Saeng;Lim, Seung-Taek;Kim, Hyeon-Ju
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.11-17
    • /
    • 2016
  • In this study, the simulation for performance comparison between basic single stage organic rankine cycle, multi stage reheater cycle and multi stage reheater & recuperator cycle was carried out. The multi stage reheater cycle and multi stage reheater & recuperator cycle was designed to improve the efficiency for organic rankine cycle using heat source from industrial waste heat and heat sink from deep ocean water. R245fa was selected as a refrigerant for the cycle and system efficiencies were simulated by the variation of the heat sink temperature and the cycle classification. Performance characteristics were simulated by using the Aspen HYSYS. It was confirmed that the system efficiency was decreased by the increase of heat sink temperature. These results can be considered to be applied as geo-ocean thermal energy conversion in where plenty of geothermal or ocean thermal resource exist.

Optimum maintenance scenario generation for existing steel-girder bridges based on lifetime performance and cost

  • Park, Kyung Hoon;Lee, Sang Yoon;Yoon, Jung Hyun;Cho, Hyo Nam;Kong, Jung Sik
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.641-653
    • /
    • 2008
  • This paper proposes a practical and realistic method to establish an optimal lifetime maintenance strategy for deteriorating bridges by considering the life-cycle performance as well as the life-cycle cost. The proposed method offers a set of optimal tradeoff maintenance scenarios among other conflicting objectives, such as minimizing cost and maximizing performance. A genetic algorithm is used to generate a set of maintenance scenarios that is a multi-objective combinatorial optimization problem related to the lifetime performance and the life-cycle cost as separate objective functions. A computer program, which generates optimal maintenance scenarios, was developed based on the proposed method using the life-cycle costs and the performance of bridges. The subordinate relation between bridge members has been considered to decide optimal maintenance sequence and a corresponding algorithm has been implemented into the program. The developed program has been used to present a procedure for finding an optimal maintenance scenario for steel-girder bridges on the Korean National Road. Through this bridge maintenance scenario analysis, it is expected that the developed method and program can be effectively used to allow bridge managers an optimal maintenance strategy satisfying various constraints and requirements.

Numerical Prediction of the Performance of Refrigeration Cycle in a Domestic Refrigerator/Freezer(I) (가정용 전기냉장고의 냉동사이클 전산해석(I))

  • Han, I.C.;Park, J.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.277-288
    • /
    • 1992
  • Numerical simulations are made of the refrigeration cycle in a domestic refrigerator/freezer. The main purpose of the present study is to predict the steady-state cycle performance with various specifications of cycle components and cabinet under the continuous running conditions. The detailed mathematical models are constructed for both the cycle components and cabinet, which are strongly coupled with each other. The simultaneous equations are solved by simple iteration method, and the results obtained are examined to assess the effect of the cycle components and cabinet modification on the system performance.

  • PDF

LNG운반선의 증발기체 재액화 장치의 사이클 해석

  • Jin, Yeong-Uk
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.221-232
    • /
    • 2012
  • Cycle analysis has been performed to find out the optimum design point of the BOG re-liquefaction plant. The cycle state, defined by three cycle variables, was mainly described by the three cold temperatures of the three-pass heat exchanger, on which the constraints by the heat exchanger are imposed. The cycle states which are confined within a domain limited by the temperature constraints were the primary issue of this study. The BOG mass within the domain was analyzed first and then the cycle performance was related to the BOG mass afterwards, which enabled us to explain the observed behavior of the cycle performance under the temperature constraints by the heat exchanger. A good cycle performance could be ensured if the two cold Nitrogen temperatures of the three temperatures were placed close together near $-140^{\circ}C$ while the BOG temperature is kept far above enough, but not too far, from $-140^{\circ}C$ such that it does not interfere in their optimum temperature range.

  • PDF

Simulation Study on the Performance Improvement of a Transcritical Carbon Dioxide Cycle (초월임계 이산화탄소 사이클의 성능향상에 관한 시뮬레이션 연구)

  • 조홍현;김용찬;서국정
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.158-166
    • /
    • 2004
  • The performance of a heat pump using $CO_2$ is predicted and analyzed by using a cycle simulation model developed in this study. Cycle simulations are conducted by varying design parameters and operating conditions with the applications of advanced techniques to improve system performance. The applied systems in the simulations are internal heat exchanger, expander, and 2-stage compression with intercooling. As a result, the applications of advanced techniques improve the heating and cooling performances of the transcritical $CO_2$ cycle by 8∼26% and 20∼30%, respectively, over the basic cycle.

Experimental Study on the Heating Performance of a Variable Speed CO2 Heat Pump with a Variation of Operating Conditions (가변속 이산화탄소 열펌프의 난방성능 특성에 관한 실험적 연구)

  • Cho, Hong-Hyun;Lee, Ho-Sung;Jang, Yong-Hee;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.694-701
    • /
    • 2007
  • The applications of a transcritical $CO_2$ cycle into water heaters show advantages over conventional systems in the respect of power consumption and heating efficiency because the $CO_2$ cycle has a high compressor discharge temperature. Besides, the heating performance of the transcritical $CO_2$ cycle can be improved by optimizing operating conditions. In this study, the heating performance of a variable speed $CO_2$ heat pump was measured and analyzed by varying refrigerant charge amount, EEV opening, compressor frequency and outdoor temperature. As a result, the optimum normalized charge for heating was 0.226. The COPs at the compressor frequencies of 40, 50 and 60 Hz were 2.94, 2.75 and 2.25, respectively. The heating performance of the $CO_2$ cycle with charge amount was more sensitive than the cooling performance. Moreover, the heating performance was improved significantly by optimizing of compressor frequency and EEV opening.

Experimental Study on the Cooling Performance Improvement of a Two-stage Compression $CO_2$ Cycle (2단압축 이산화탄소 사이클의 냉방성능 향상 특성에 대한 실험적 연구)

  • Cho Hong-Hyun;Lee Ho-Seong;Kim Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.835-841
    • /
    • 2006
  • A $CO_2$ system using the two-stage compression cycle was tested by varying $1^{st}-2^{nd}$ compressor frequencies in the cooling mode. To improve the cooling performance of the two-stage compression $CO_2$ cycle, the following cycle options were applied: a basic cycle, a cycle with an intercooler, a cycle with an IHX (internal heat exchanger), and a cycle with an intercooler and IHX. The cycle with the intercooler-IHX showed the highest cooling capacity improvement among the cycle options at all compressor frequencies. The cycle with the intercooler, the cycle with the IHX, and the cycle with the intercooler-IHX improved the cooling COP by 7, 12, and 15%, respectively, over the basic $CO_2$ cycle when the compressor frequencies for the first and second compressors were 50 Hz and 30 Hz, respectively. In addition, the applications of the selected cycle options enhanced system reliability.

Experimental Studies on the Performance of a Transcritical Cycle for Hot Water Heating Using Carbon Dioxide (이산화탄소를 이용한 온수급탕용 초월임계사이클의 성능에 대한 실험적 연구)

  • 김성구;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.461-470
    • /
    • 2003
  • The purpose of this study is to investigate the performance of a transcritical cycle for hot water heating using $CO_2$ as a working fluid. Some of the main parameters that affect the practical performance of the $CO_2$ system are discussed; the performance on the variation of refrigerant charge, changes in flow conditions of secondary fluids, and that with or without internal heat exchanger, The experimental results show that the optimum charge is approximately the same for various mass flow rates of the secondary fluid at gas cooler. The experimental results on the effect of secondary fluids are in general agreement with the experimental results of transcritical cycle in the open literature and show similar trend for conventional subcritical vapor compression cycles. The heat exchanger effectiveness increases with an increase of the heat exchange area of the internal heat exchanger regardless of the mass flow rate at the gas cooler.