• Title/Summary/Keyword: Cycle loading

Search Result 534, Processing Time 0.023 seconds

Energy-Based Seismic Evaluation of Reinforced Concrete Structures I - Flexural Components (에너지에 근거한 철근콘크리트 구조물의 내진성능 평가 I - 휨요소)

  • 김장훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.33-44
    • /
    • 1999
  • An energy balance procedure is developed to incorporate the effects of earthquake duration which involves the effect of cyclic loading and the corresponding cumulative plastic deformation. Particular emphasis is given to the flexural failure of non-seismically designed columns of reinforced concrete frames. For this, conceptual strength deterioration models for columns, governed by concrete, anchorage failure and longitudinal steel fracture due to low-cycle fatigue, are proposed. It is evident that the energy-based method has good agreement with the experimental data and is able to predict the failure mode.

  • PDF

Development of the Centrifugal Compressor for a R134a Turbo-Chiller Part 1 : Design of the Centrifugal Compressor (R134a용 터보냉동기의 원심압축기 개발 Part 1 : 원심압축기 설계)

  • Lee, Yongduck;Jeong, Jinhee;Lee, Hyeonkoo;Yoon, Pil-Hyun;Kim, Kilyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.44-51
    • /
    • 2000
  • The present study has been conducted to design the high efficiency centrifugal compressor for a R134a turbo-chiller. The centrifugal compressor consists of an impeller with splitters, two vaneless diffusers, a low-solidity vaned diffuser and a volute. A cycle analysis program for a turbo-chiller was developed to obtain compressor design parameters and requirements. We have designed the high efficiency centrifugal compressor by applying the repeated design procedure including a meanline design, a 3D geometry generation and fluid dynamic loading calculations.

  • PDF

Sliding Mode Control of Electric Booster System (전동 부스터의 슬라이딩 모드 제어)

  • Yang, I-Jin;Choi, Kyu-Woong;Huh, Kun-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.519-525
    • /
    • 2012
  • Electric brake booster systems replace conventional pneumatic brake boosters with electric motors and rotary-todisplacement mechanisms including ECU (Electronic Control Unit). Electric booster brake systems require precise target pressure tracking and control robustness because vehicle brake systems operate properly given the large range of loading and temperature, actuator saturation, load-dependent friction. Also for the implement of imbedded control system, the controller should be selected considering the limited memory size and the cycle time problem of real brake ECU. In this study, based on these requirements, a sliding mode controller has been chosen and applied considering both model uncertainty and external disturbance. A mathematical model for the electric booster is derived and simulated. The developed sliding mode controller considering chattering problem has been compared with a conventional cascade PID controller. The effectiveness of the controller is demonstrated in some braking cases.

Influence of Fiber Breaks on the Frictional Work in a Continuous Fiber-Reinforced Ceramic Matrix Composite (장섬유로 보강된 세라믹 복합재료에서 섬유파단이 마찰일에 미치는 영향)

  • 조종두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1730-1737
    • /
    • 1994
  • Theoretical equations for an influence of fiber breaks on the frictional heating phenomenon in a uniaxially fiber-reinforced ceramic matrix composite are formulated. The microslip and gross slip phases are considered for deriving the equations. During a complete loading/unloading cycle, the work done against friction is derived. In order to estimate interfacial shear in a unidirectionally reinforced ceramic matrix composite which has fiber fractures as well as matrix cracks, parametric studies using the derived equations are done. In a case of less than 10% fiber fractures, additional frictional work due to fiber breaks can be neglected compared to the rest.

Structural Analysis on Durability of Forklift due to Opening and Closing Between Forks (개폐에 따른 지게차 포크의 내구성에 대한 구조해석)

  • Cho, Jaeung;Han, Moonsik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.199-205
    • /
    • 2013
  • Stress and deformation on forklift happened at loading, unloading or moving freight are studied by structural and fatigue analysis in this study. As model 1 as closing type between forks has lower stress and stain than model 2 at opening type, model 1 has more durability than model 2. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'SAE bracket history' with the severest change of load at model 1 and 2, maximum life is shown with Cycle. Minimum damage with 854 at model 2 becomes much higher than model 1. As the gap between forks becomes open, the damage probability becomes higher. The structural result of this study can be effectively utilized with the safe and stable design of forklift by investigating prevention and durability against its damage.

Prediction of terminal density through a two-surface plasticity model

  • Won, Jongmuk;Kim, Jongchan;Park, Junghee
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.493-502
    • /
    • 2020
  • The prediction of soil response under repetitive mechanical loadings remains challenging in geotechnical engineering applications. Modeling the cyclic soil response requires a robust model validation with an experimental dataset. This study proposes a unique method adopting linearity of model constant with the number of cycles. The model allows the prediction of the terminal density of sediments when subjected to repetitive changes in pore-fluid pressure based on the two-surface plasticity. Model simulations are analyzed in combination with an experimental dataset of sandy sediments when subjected to repetitive changes in pore fluid pressure under constant deviatoric stress conditions. The results show that the modified plastic moduli in the two-surface plasticity model appear to be critical for determining the terminal density. The methodology introduced in this study is expected to contribute to the prediction of the terminal density and the evolution of shear strain at given repetitive loading conditions.

Analysis of the Extension Effects of Fatigue Life by Pre-Indentation in Aluminum Alloy Plates (알루미늄 합금 판재에서 예비압입에 의한 피로수명의 연장효과 분석)

  • Cho, Hwankee;Hwang, Jungsun
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.45-52
    • /
    • 2007
  • This paper analyzed the extension effects of fatigue life and the application of pre-indentation in aircraft structural material such as aluminum alloys. The test specimen used the thin sheet of aluminum alloy with a single-edged notch. The experiments were conducted after making the pre-crack under a constant amplitude loading. As the fatigue life extension technique, the pre-indentation making an indent on the predicted path of crack propagation was applied. The work presented here discussed about a proper mathematical relation between crack growth rate and the range of stress intensity factor and about the generalization of crack growth mechanism with large retardation effect. A technique to enhance the applicability of pre-indentation if also mentioned.

  • PDF

Crack Closure Effects on Small Fatigue Crack Growth Behavior in High Strength Aluminum (고강도 알루미늄에서의 균열닫힘이 미소 피로균열의 전파거동에 미치는 영향)

  • Lee, Hyeon-U
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.55-64
    • /
    • 1990
  • The fatigue crack growth behavior of physically-short cracks(0.2${\Delta}K$ with $da/dN<1{\times}10^{-7}m/cycle$. The transition crack lengths where similtude with ${\Delta}K$ existed was between 1 and 2mm. The effective stress intensity factor range based on COD measurements gave better correlation between the physically-short and long cracks. Thus it can be considered that the crack closure effect is one of the main factors which causes the differences between these two cracks.

  • PDF

Fatigue Analysis of Fiber-Reinforced Composites Using Damage Mechanics (손상역학을 이용한 섬유강화 복합재료의 피로해석)

  • Lim Dong-Min;Yoon Ihn-Soo;Kang Ki-Weon;Kim Jung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.112-119
    • /
    • 2006
  • Due to their intrinsic anisotropy, composite materials show quite complicated damage mechanism with their fiber orientation and stacking sequence and especially, their fatigue damage process is sequential occurrence of matrix cracking, delamination and fiber breakage. In the study, to propose new model capable of describing damage mechanism under fatigue loading, fatigue analysis of composite laminates based on damage mechanics, are performed. The average stress is disassembled with stress components of matrix, fiber and interlaminar interface through stress analysis. Each stress components are used to assess static damage analysis based on continuum damage mechanics (C.D.M.). Fatigue damage curves are obtained from hysteresis loop and assessed by the fatigue damage analysis. Then, static and fatigue damage analysis are combined. Expected results such as stress-cycle relation are verified by the experimental results of fatigue tests.

A Study on the Surface Grinding Temperature Characteristics of the Carbon Fiber Epoxy Composite Materials (탄소섬유 에폭시 복합재료의 평면 연삭온도 특성에 관한 연구)

  • 한흥삼
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.441-446
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently required cutting or grinding due to the dimensional inaccuracy for precision machine elements. During the composite machining operations such as cutting and grinding, the temperature at the grinding area may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the grinding point during surface grinding of carbon fiber epoxy composite was measured. The grinding temperature and surface roughness were also measured to investigate the surface grinding characteristics of the composited. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed, feed speed, depth of cut and stacking angle. From the experimental investigation, the optimal conditions for the composite plain grinding were suggested.

  • PDF