• Title/Summary/Keyword: Cycle frequency

Search Result 1,047, Processing Time 0.03 seconds

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Acoustic Measures from Normal and Vocal Polyp Patients (정상인과 후두폴립환자에서의 음성학적 측정)

  • 최홍식;장미숙;이정준
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.5 no.1
    • /
    • pp.38-43
    • /
    • 1994
  • Though normal vocal cords show regular vibration, pathologic vocal cords show irregularity between peaks. Jitter means fluctuation in the time interval between peaks, and Shimmer means cycle to cycle variation in the amplitude of the peaks. We investigated the vocal vibration of Korean normal persons objectively. The fundamental frequency, Jitter, Shimmer and SNR(signal to noise ratio) of normal persons were compared with that of vocal Polyp Patients with CSpeech Program for the possibility of distinguishing the pathologic vocal vibration from normal. The results were as follows ; Comparing the fundamental frequency of vocal Polyp Patients with normal persons, great change was noted only in female cases. But the Jitter and Shimmer of vocal polyp patients were greater than normal significantly in both male and female cases. SNR was lower than normal in vocal polyp patients. In the conclusion, fundamental frequency, Jitter, Shimmer and SNR might be meaningful parameters distinguisuing pathologic vibration from normal.

  • PDF

Crystal Structure, Microstructure and Mechanical Properties of NbN Coatings Deposited by Asymmetric Bipolar Pulsed DC Sputtering

  • Chun, Sung-Yong;Im, Hyun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.33-37
    • /
    • 2017
  • Single phase niobium nitride (NbN) coatings were deposited using asymmetric bipolar pulsed dc sputtering by varying pulse frequency and duty cycle of pulsed plasmas. Crystal structure, microstructure, morphology and mechanical properties were examined using XRD, FE-SEM, AFM and nanoindentation. Upon increasing pulse frequencies and decreasing duty cycles, the coating morphology was changed from a pyramidal-shaped columnar structure to a round-shaped dense structure with finer grains. Asymmetric bipolar pulsed dc sputtered NbN coatings deposited at pulse frequency of 25 kHz is characterized by higher hardness up to 17.4 GPa, elastic modulus up to 193.9 GPa, residual compressive stress and a smaller grain size down to 27.5 nm compared with dc sputtered NbN coatings at pulse frequency of 0 kHz. The results suggest that the asymmetric bipolar pulsed dc sputtering technique is very beneficial to reactive deposition of transition-metal nitrides such as NbN coatings.

A Comparative Study of TiAlN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering (DC 스퍼터법과 비대칭 바이폴라 펄스 DC 스퍼터법으로 증착된 TiAlN 코팅막의 물성 비교연구)

  • Chun, Sung-Yong;Lee, Tae Yang
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.168-173
    • /
    • 2014
  • The paper presents the comparative results of TiAlN coatings deposited by DC and pulsed DC asymmetric bipolar magnetron sputtering systems. The results show that, with the decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar to a dense structure, with finer grains. Pulsed sputtered TiAlN coatings showed higher hardness, higher residual stress, and smaller grain sizes than dc prepared TiAlN coatings. Moreover residual stress of pulsed sputtered TiAlN coatings increased on increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.

A Comparative Study of NbN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering (DC 스퍼터법과 비대칭 바이폴라 펄스 DC 스퍼터법으로 증착된 NbN 코팅막의 물성 비교연구)

  • Chun, Sung-Yong;Oh, Bok-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.136-141
    • /
    • 2015
  • The paper presents the comparative results of NbN coatings deposited by DC and pulsed DC asymmetric bipolar magnetron sputtering systems. The results show that, with the decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar to a dense structure, with finer grains. The Pulsed sputtered NbN coatings showed higher hardness, higher residual stress, and smaller grain sizes than those of DC prepared NbN coatings. Moreover residual stress of pulsed sputtered NbN coatings increased on increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.

Low-frequency Ultrasound Enhanced Transdermal Drug Delivery Across Rat Skin

  • Lee, Hwa-Jin;Kim, Jong-Youl;Park, Jin-Nam;Shin, Young-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.6
    • /
    • pp.365-368
    • /
    • 2007
  • The primary aim of this study was to investigate the enhancement effect of low-frequency ultrasound on skin permeation. In vitro permeation experiments were performed using Franz modified diffusion cells with ketoprofen as model drug. The effect of various ultrasound factors-ultrasound application mode (continuous mode and discontinuous mode), ultrasound intensity (0.26 $W/cm^2$, and 0.29 $W/cm^2$) and duty cycle (3%, 16%, 50%, and 83%) were studied. The highest permeation was observed at 0.29 $W/cm^2$ intensity, 50% duty cycle, and discontinuous mode. The result suggested the feasibility of low frequency ultrasound application for the phonophoretic transdermal drug delivery system.

Low Area and High Performance Multi-mode 1D Transform Block Design for HEVC (HEVC를 위한 저면적 고성능 다중 모드 1D 변환 블록 설계)

  • Kim, Ki-Hyun;Ryoo, Kwang-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.78-83
    • /
    • 2014
  • This paper suggest an effective idea to implement an low area multi-mode one dimension transform block of HEVC(High Efficiency Video Coding). The time consuming multiplier path is designed to operate on low frequency. Normal multipliers dealing with variable operands are replaced with smaller constant multipliers which do the product with constant coefficient and variable only using shifters and adders. This scheme increases total multiplier counts but entire areas are reduced owing to smaller area of constant multiplier. Idle cycles caused by doubled multipliers enable to use multi-cycle paths on the cycle eating multiplier data path. Operating frequency is lowered by multi-cycle path but total throughput is maintained. This structure is implemented with TSMC 0.18 CMOS process library, and operated on 186MHz frequency to process a 4k($3840{\times}2160$) image. Max operating frequency is 300MHz.

Performance Comparison and Its Verification of Spectrum Sharing Technologies Using Interference Load Concept (간섭부하 개념을 이용한 주파수 공동사용 기술의 성능비교 및 검증)

  • Lee, Sangjoon;Um, Jungsun;Yoon, Hyungoo;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.177-185
    • /
    • 2017
  • In this paper, we proposed a concept of interference load to analyze the performance of spectrum sharing technologies in unlicensed frequency bands. The interference load can quantitatively compare the technical properties of various spectrum sharing technologies, such as frequency hopping(FH), duty cycle(DC), listen-before-talk(LBT). Therefore, it can help to evaluate whether a local regulation about spectrum sharing is reasonably established or not. In order to verify the suggested concept, we applied it to 2.4 GHz frequency bands. Also, we demonstrated a real-time test-bed. Two bit error rate(BER) curves for FH with 10 random channels and DC of 10 %, show such good agreement that our proposed concept is expected to be widely used to assess various spectrum sharing technologies.

Transcutaneous Energy Transmission with Double Tuned Duty Cycle Control (양단 공진과 듀티 컨트롤을 이용한 1-2cm 공극을 통한 에너지 전달)

  • Kim, Chang-Gyun;Cho, Bo-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.486-488
    • /
    • 1996
  • A dc-dc converter which transfers l2-48W of power(regulated output voltage 24V) across a large, variable air gap(1-2cm) has been designed. This converter employs double resonance to compensate the large leakage inductance of the primary and secondary of the transcutaneous transformer. To maximize the effect of resonance, a constant frequency, duty cycle control method is used. The duty cycle control presents advantages over a frequency control in terms of increase in dc voltage gain and reduction of the primary current. The analysis and design procedure for the proposed scheme is presented and the performance result is simulated and verified experimentally.

  • PDF